RING STRUCTURE OF THE FLOER COHOMOLOGY OF $\Sigma \times \mathbb{S}^1$

Vicente Muñoz

(Received 31 October 1997; in revised form 12 May 1998)

We give a presentation for the Floer cohomology ring $HF^*(\Sigma \times \mathbb{S}^1)$, where Σ is a Riemann surface of genus $g \geq 1$, which coincides with the conjectural presentation for the quantum cohomology ring of the moduli space of odd degree rank two stable vector bundles on Σ with fixed determinant. We study the spectrum of the action of $H^*(\Sigma)$ on $HF^*(\Sigma \times \mathbb{S}^1)$ and prove a physical assumption made in [1]. © 1999 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

Let $\Sigma = \Sigma_g$ be a Riemann surface of genus $g \geq 1$ and let \mathcal{N}_g denote the space of flat $SO(3)$-connections with nontrivial second Stiefel--Whitney class w_2 modulo the gauge transformations that can be lifted to $SU(2)$. This is a smooth symplectic manifold of dimension $6g - 6$ and it is the space considered in [6, 4, Section 3]. Alternatively, we can consider Σ as a smooth complex curve of genus g and \mathcal{N}_g as the moduli space of odd degree rank two stable vector bundles on Σ with fixed determinant, which is a smooth complex variety of complex dimension $3g - 3$. The symplectic deformation class of \mathcal{N}_g only depends on the genus g and not on the particular complex structure on Σ. We note that, following the conventions of [8], the moduli space of anti-self-dual instantons on $\Sigma \times \mathbb{C}P^1$ with charge $\kappa = 0$ is again isomorphic to \mathcal{N}_g.

We consider the following rings associated with the Riemann surface (we will always use \mathbb{C}-coefficients):

- $QH^*(\mathcal{N}_g)$ is the quantum cohomology of \mathcal{N}_g (see [13]). This is well-defined since \mathcal{N}_g is a positive symplectic manifold. As vector spaces, $QH^*(\mathcal{N}_g) = H^*(\mathcal{N}_g)$, but the multiplicative structure is different. The minimal Chern number of \mathcal{N}_g is 2, so $QH^*(\mathcal{N}_g)$ is $\mathbb{Z}/4\mathbb{Z}$-graded (the grading comes from reducing mod 4 the \mathbb{Z}-grading of $H^*(\mathcal{N}_g)$). The ring structure of $QH^*(\mathcal{N}_g)$, called quantum multiplication, is a deformation of the usual cup product for $H^*(\mathcal{N}_g)$. It is associative and graded commutative. We remark that we do not introduce Novikov rings to define $QH^*(\mathcal{N}_g)$ as in [13, Section 8] (otherwise said, as $H^2(\mathcal{N}_g) = \mathbb{Z}$, we should introduce an extra variable q of degree 4, then we equate $q = 1$).

- $HF^*_*(\mathcal{N}_g)$ is the symplectic Floer homology of \mathcal{N}_g (with the symplectomorphism $\phi = id$). The symplectic manifold \mathcal{N}_g is connected, simply connected and $\pi_2(\mathcal{N}_g) = \mathbb{Z}$ (see [4, introduction]), so the groups $HF^*_*(\mathcal{N}_g)$ are well-defined [5]. They are $\mathbb{Z}/4\mathbb{Z}$-graded. $HF^*_*(\mathcal{N}_g)$ is endowed with the pair of pants product [12], which is an associative and graded commutative ring structure. The symplectic Floer cohomology of \mathcal{N}_g, $HF^*_*(\mathcal{N}_g)$, is defined as the dual of the symplectic Floer homology. There is a Poincaré duality [12, remark 2.4] and a pairing $\langle \cdot, \cdot \rangle$.

1 Supported by a grant from Ministerio de Educación y Cultura of Spain.
\(HF_*(\Sigma \times S^1) \) is the instanton Floer homology of the three manifold \(Y = \Sigma \times S^1 \) for the \(SO(3) \)-bundle with second Stiefel-Whitney class \(w_2 = PD[S^1] \in H^2(Y; \mathbb{Z}/2\mathbb{Z}) \). This is defined in [6] and is \(\mathbb{Z}/4\mathbb{Z} \)-graded. We introduce a multiplication on \(HF_*(Y) \) using a suitable four-dimensional cobordism [14, section 5]. Let \(X \) be the four manifold given as a pair of pants times \(\Sigma \), which is a cobordism between \(Y \) and \(Y \). This gives a map \(HF_*(Y) \otimes HF_*(Y) \rightarrow HF_*(Y) \), which is an associative and graded commutative ring structure on \(HF_*(Y) \). Again, the instanton Floer cohomology of \(Y \), \(HF^*(Y) \), is the dual of \(HF_*(Y) \). There is a natural isomorphism \(HF^*(Y) \cong HF_*(Y) \) \(\oplus \mathbb{C} \), where \(\oplus \mathbb{C} \) denotes \(\mathbb{C} \) with reversed orientation. As \(Y = \Sigma \times S^1 \) admits an orientation reversing self-diffeomorphism, we can identify \(HF^*(Y) \cong HF^*(Y) \) \(\oplus \mathbb{C} \), so \(HF^*(Y) = HF^*(\Sigma \times S^1) \).

Theorem 1. There are natural isomorphisms of vector spaces

\[
QH^* (\Sigma_\phi) \cong HF^*_{symp}(\Sigma_\phi) \cong HF^* (\Sigma \times S^1).
\]

Moreover the first isomorphism respects the ring structures.

Proof. The second isomorphism is due to Dostoglou and Salamon [4, Theorem 10.1]. It is the particular case where one considers \(\phi = \text{id} : \Sigma \rightarrow \Sigma \), in which the mapping torus of \(\phi \) is \(\Sigma \times S^1 \) and the \(SO(3) \)-bundle has \(w_2 = PD[S^1] \). The first isomorphism is a standard result obtained by Floer [5]. In [12, Theorem 5.1] it is proved that the first isomorphism intertwines the products. \(\square \)

Conjecture 2. The second isomorphism in (1) is a ring isomorphism.

D. Salamon has informed the author that the adiabatic limit techniques of [4] can be extended to give a proof of Conjecture 2. He gave a lecture at Maryland in Spring 1994 on this issue. Many implications of this result to four-dimensional topology were given by Donaldson [3]. The author followed this program in [9] for small genus. Later he obtained very nice results on the behaviour of Donaldson invariants under the operation of connected sum along a Riemann surface [10, 11], exploiting only the isomorphism (1) as vector spaces.

Using physical methods, Vafa et al. [1] find a set of generators and relations for \(QH^* (\Sigma_\phi) \). There are two main assumptions in their argument. The first one is Conjecture 2. The second one is that the spectrum of the action of \(H^* (\Sigma) \) on \(HF^* (\Sigma \times S^1) \) can be read off from the Donaldson invariants of \(\Sigma \times \mathbb{T}^2 \).

Later, Siebert and Tian [15] claimed to have found a mathematical proof for the presentation of \(QH^* (\Sigma_\phi) \) given in [1] but they could not yet finish their program. In this paper, we prove that the set of generators and relations given in [1] is a presentation for \(HF^* (\Sigma \times S^1) \) (Theorem 16), following a method inspired in Siebert and Tian [15]. This together with completion of the work [15] will produce a proof of Conjecture 2 (although in a rather indirect way). We also prove the physical assumption on the spectrum of \(HF^* (\Sigma \times S^1) \) in [1] (cf. Proposition 20).

We leave the implications of Theorem 16 to Donaldson invariants of four-manifolds (mostly in the case \(\mu = 1 \)) for future work.
2. RING STRUCTURE OF $H^*({\mathcal N}_g)$

Let us recall the known description of the homology of \mathcal{N}_g \cite{7, 17}. Let $\mathcal{V} \to \Sigma \times \mathcal{N}_g$ be the universal bundle and consider the Künneth decomposition as in \cite{7}

$$c_2(\text{End}_0 \mathcal{V}) = 2a[\Sigma] + 4\psi - b$$

with $\psi = \sum c_{i_1 i_2}^g$, where $\{\gamma_1, \ldots, \gamma_{2g}\}$ is a symplectic basis of $H_1(\Sigma; \mathbb{Z})$ with $\gamma_{i_1 i_2}^g = [\Sigma]$ for $1 \leq i \leq g$, and $\{\gamma_i^g\}$ is the dual basis of $H^1(\Sigma)$. In terms of the map $\mu: H_*(\Sigma) \to H^{*-*}(\mathcal{N}_g)$, given by $\mu(x) = -\frac{1}{2} p_1(g\omega)/x$ (here $g\omega \to \Sigma \times \mathcal{N}_g$ is the associated universal $SO(3)$-bundle, and $p_1(g\omega) \in H^2(\Sigma \times \mathcal{N}_g)$ its first Pontrjagin class), we have

$$\begin{align*}
a & = 2\mu(\Sigma) \in H^2 \\
c_i & = \mu(\gamma_i) \in H^3, \quad 1 \leq i \leq 2g \\
b & = -4\mu(x) \in H^4
\end{align*}$$

where $x \in H_0(\Sigma)$ is the class of the point, and $H^i = H^i(\mathcal{N}_g)$. These elements generate $H^*(\mathcal{N}_g)$ as a ring \cite{7, 18}. So there is a basis $\{f_s\}_{s \in \mathcal{S}}$ for $H^*(\mathcal{N}_g)$ with elements of the form

$$f_s = a^b c_i^m c_i^m \cdots c_i^m$$

for a finite set \mathcal{S} of multi-indices of the form $s = (n, m; i_1, \ldots, i_r)$, $n, m \geq 0$, $r \geq 0$, $1 \leq i_1 < \cdots < i_r \leq 2g$. The mapping class group $\text{Diff}(\Sigma)$ acts on $H^*(\mathcal{N}_g)$, with the action factoring through the action of $\text{Sp}(2g, \mathbb{Z})$ on $\{c_i\}$. The invariant part, $H^*_I(\mathcal{N}_g)$, is generated by a, b and $c = -2\sum_{i=0}^g c_i c_{i+g}$. Then

$$H^*_I(\mathcal{N}_g) = \mathbb{C}[a, b, c]/I_g,$$

(2)

where I_g is the ideal of relations satisfied by a, b and c. Here $\deg(a) = 2$, $\deg(b) = 4$, $\deg(c) = 6$. Actually, a basis for $H^*_I(\mathcal{N}_g)$ is given by the monomials $a^b c^m e^r$, $n + m + r < g$ (see \cite{17}). For $0 \leq k \leq g$, the primitive component of $\Lambda^k H^3$ is

$$\Lambda^k H^3 \ni \ker(c^{g-k+1}: \Lambda^k H^3 \to \Lambda^{2g-k+2} H^3).$$

Then the $\text{Sp}(2g, \mathbb{Z})$-decomposition of $H^*(\mathcal{N}_g)$ is \cite{7}

$$H^*(\mathcal{N}_g) = \bigoplus_{k=0}^g \Lambda^k H^3 \oplus \mathbb{C}[a, b, c]/I_{g-k}.$$

Proposition 3 (Siebert and Tian \cite{17}). For $g = 1$, let $q_1^1 = a$, $q_2^1 = b$, $q_3^1 = c$. Define recursively, for $g \geq 1$,

$$\begin{align*}
q_{g+1}^1 & = aq_g^1 + g^2 q_g^2 \\
q_{g+1}^2 & = bq_g^1 + \frac{2g}{g+1} q_g^3 \\
q_{g+1}^3 & = cq_g^1
\end{align*}$$

Then $I_g = (q_1^g, q_2^g, q_3^g)$, for all $g \geq 1$.

Proof. This is the form of the relations given in \cite[Proposition 3.2]{17}.

\[\square\]

3. RING STRUCTURE OF HF^*_g

With the aid of the basis $\{f_s\}_{s \in \mathcal{S}}$ for $H^*(\mathcal{N}_g)$ we are going to construct a basis for $HF^*_g = HF^*(\Sigma \times \mathbb{S}^1)$ to understand its ring structure. We need to use the gluing
properties of the Floer homology of a three manifold. Put \(Y = \Sigma \times \mathbb{S}^1 \) and let \(w_2 = PD[\mathbb{S}^1] \in H^2(Y; \mathbb{Z}/2\mathbb{Z}) \). Let us recall \([11]\) that for a 4-manifold \(X \) we define \(\mathbb{A}(X) = \text{Sym}^*(H_0(X) \oplus H_2(X)) \otimes \wedge^* H_1(X) \). Let us state the result that we shall use.

Proposition 4 \([2, 3, 9]\). For any smooth oriented four-manifold \(X^4 \) with boundary \(\partial X^4 = Y \), any \(w \in H^2(Y; \mathbb{Z}) \) with \(w|_Y = PD[\mathbb{S}^1] \) in \(H^2(Y; \mathbb{Z}/2\mathbb{Z}) \), and any \(z \in \mathbb{A}(X^4) \), we have defined a relative invariant \(\phi^w(X^4, z) \in HF^*(Y) \). These relative invariants enjoy the following gluing property, suppose \(X = X_1^4 \cup_Y X_2^4 \) is a closed four-manifold split into two open four manifolds \(X_i^4 \) with \(\partial X_1^4 = Y, \partial X_2^4 = -Y \), and \(w \in H^2(Y; \mathbb{Z}) \) satisfying \(w|_Y = PD[\mathbb{S}^1] \) in \(H^2(Y; \mathbb{Z}/2\mathbb{Z}) \). Put \(w_i = w|_{X_i} \). Then for \(z_i \in \mathbb{A}(X_i^4) \), \(i = 1, 2 \), we have

\[
D_X^{w, \Sigma}(z_1z_2) = \langle \phi^{w_1}(X_1^4, z_1), \phi^{w_2}(X_2^4, z_2) \rangle
\]

where \(D_X^{w, \Sigma} = D_X^w + D_X^{w+\Sigma} \) (\(D_X^w \) is the Donaldson invariant of \(X \) for \(w \), see also \([9, 10]\)). When \(b^+ = 1 \), the invariants are calculated for a long neck, i.e. we refer to the invariants defined by \([\Sigma]\).

Consider the manifold \(A = \Sigma \times D^2 \), with boundary \(Y = \Sigma \times \mathbb{S}^1 \), and let \(\Delta = pt \times D^2 \subset A \) be the horizontal slice with \(\partial \Delta = \mathbb{S}^1 \). Put \(w = PD[\Delta] \in H^2(A; \mathbb{Z}) \). Clearly \(\mathbb{A}(A) = \mathbb{A}(\Sigma) = \text{Sym}^*(H_0(\Sigma) \oplus H_2(\Sigma)) \otimes \wedge^* H_1(\Sigma) \). For every \(s \in \mathcal{S}, f_s = \alpha b^n c_{i_1} \cdots c_{i_n} \), define

\[
z_s = \Sigma^n x^n \gamma_{i_1} \cdots \gamma_{i_n} \in \mathbb{A}(\Sigma)
\]

\[
e_s = \phi^w(A, z_s) \in HF^*(Y) = HF^*_g
\]

(see we identify Floer homology and Floer cohomology through Poincaré duality). Then \(\{e_s\}_{s \in \mathcal{S}} \) is a basis for \(HF^*_g \). This is a consequence of \([11, \text{Lemma 21}]\). The product \(HF^*_g \otimes HF^*_g \to HF^*_g \) is given by \(\phi^w(A, z_s) \phi^w(A, z_r) = \phi^w(A, z_sz_r) \). Then \(\phi^w(A, 1) \) defines the neutral element of the product. As a consequence, the following elements are generators of \(HF^*_g \),

\[
\begin{align*}
\alpha &= 2 \phi^w(A, \Sigma) \in HF^2_g \\
\psi_i &= \phi^w(A, \gamma_i) \in HF^3_g, \quad 0 \leq i \leq 2g.
\end{align*}
\]

\[
\beta = -4 \phi^w(A, x) \in HF^4_g
\]

Note that there is an obvious epimorphism of rings \(\mathbb{A}(\Sigma) \to HF^*_g \).

Theorem 5. Denote by \(* \) the product induced in \(H^*(\mathcal{N}_g) \) by the product in \(HF^*_g \) under the isomorphism \(H^*(\mathcal{N}_g) \cong HF^*_g \) given by \(f_s \mapsto e_s, s \in \mathcal{S} \). Then \(* \) is a deformation of the cup-product graded modulo 4, i.e. for \(f_1 \in H^i(\mathcal{N}_g), f_2 \in H^j(\mathcal{N}_g) \), it is \(f_1 * f_2 = \sum_{r \geq 0} \Phi_r(f_1, f_2) \), where \(\Phi_r \in H^* \mathcal{N}_g \) and \(\Phi_0 = f_1 \cup f_2 \).

Proof. First, for \(s, s' \in \mathcal{S} \),

\[
\langle e_s, e_{s'} \rangle = D^{w, \Sigma}_{\Sigma \times \mathbb{C}P^1}(z_sz_{s'}) = 0,
\]

unless \(\deg(f_s) + \deg(f_{s'}) = 6g - 6 + 4r, r \geq 0 \), as these are the only possible dimensions for the moduli spaces of anti-self-dual connections on \(\Sigma \times \mathbb{C}P^1 \). Moreover, when \(\deg(f_s) + \deg(f_{s'}) = 6g - 6 \), the moduli space is \(\mathcal{N}_g \), so \(\langle e_s, e_{s'} \rangle = -\langle f_s, f_{s'} \rangle \in \mathcal{N}_g \) (the minus sign is due to the different convention orientation for Donaldson invariants).
Now let f_s, f'_s be basic elements of degrees i and j respectively. Put $f_s f'_s = \sum c_if_i$ and $f_s f'_s = \sum d_if_i$. This means that $e_s e'_s = \sum \alpha_e \epsilon_i$. Write $e_s e'_s = \sum g_m$, where $g_m = \sum_{\deg(f_s) = m} \epsilon_i$. The homogeneous parts. Put $g_m = \sum_{\deg(f_s) = m} \epsilon_i$. Let M be the maximum m such that $g_m \neq 0$. Then there is f_s of degree $6g - 6 - M$ such that $\langle g_m, f_s \rangle \neq 0$. Since $\langle g_m, f_s \rangle = \langle g_M, e_s' \rangle = \langle e_s, e_s' \rangle = D_{\Sigma \times \mathbb{C}P^1}(z_3 z_5 z_7)$, it is $\deg(f_s) + \deg(f'_s) + \deg(f_s') \geq 6g - 6$, i.e. $M \leq i + j$. Now for $m = i + j$, any f_s of degree $6g - 6 - m$, it is $\langle g_m, f_s \rangle = -D_{\Sigma \times \mathbb{C}P^1}(z_3 z_5 z_7) = \langle f_s f_s', f_s' \rangle$. So $g_{i+j} = f_s f'_s$.

Finally, $\langle e_s e'_s, e_s' \rangle = D_{\Sigma \times \mathbb{C}P^1}(z_3 z_5 z_7) = 0$, whenever $\deg(f_s) + \deg(f'_s) + \deg(f'_s) \neq 6g - 6 (mod 4)$, so $g_{i+j} = 0$ unless $M \equiv i + j (mod 4)$.

Remark 6. The isomorphism in Theorem 5 is only an isomorphism of $H^*(\mathcal{M}_g)$ and HF^*_g as vector spaces (dependent on the chosen basis $\{f_s\}_{s \leq r}$). In general, this is not a ring isomorphism (see Example 22), so we do not expect the isomorphism in (1) to coincide with that of Theorem 5.

There is again an action of Diff(Σ) on HF^*_g factoring through an action of $Sp(2g, \mathbb{Z})$ on $\{\psi_i\}$. The invariant part $(HF^*_g)_I$ is generated by α, β and $\gamma = -2\sum_{-\infty}^{\infty} \phi^m(A, \gamma, \beta, \alpha)$. The epimorphism $\mathbb{C}[\alpha, \beta, \gamma] \to (HF^*_g)_I$, $\alpha \to \phi^m(A, \alpha)$, allows us to write

$$HF^*(\Sigma \times S^1)_I = \mathbb{C}[\alpha, \beta, \gamma]/J_g,$$

where J_g is the ideal of relations of α, β and γ. Now $\deg(\alpha) = 2, \deg(\beta) = 4, \deg(\gamma) = 6$, but J_g is not a homogeneous ideal.

Lemma 7. Suppose $gJ_g \subset J_{g+1}$, for all $g \geq 1$. Then we have the $Sp(2g, \mathbb{Z})$-decomposition

$$HF^*(\Sigma \times S^1) = \bigoplus_{g=0}^{\infty} \Lambda^g H^3 \otimes \mathbb{C}[\alpha, \beta, \gamma]/J_{g-k}.$$

Proof. The isomorphisms in Theorem 1 respect the $Sp(2g, \mathbb{Z})$-action and hence induce isomorphisms on the invariant parts. Then $\dim(HF^*_g)_I = \dim H^*(\mathcal{M}_g)$, for all $g \geq 1$. Now the lemma is a consequence of the argument in the proof of [7, Proposition 2.2] and the discussion preceding it.

4. A PRESENTATION FOR $(HF^*_g)_I$

Theorem 5 and the arguments in [17, Section 2] imply that we can deform the relations of $H^*(\mathcal{M}_g)$ to get a presentation for $(HF^*_g)_I$. More explicitly,

Lemma 8. It is $(HF^*_g)_I = \mathbb{C}[\alpha, \beta, \gamma]/(R^1, R^2, R^3)$, where $R^1 = q^1 + \text{lower order terms of degrees } \deg q^1 - 4r, r > 0$, as polynomials in $\mathbb{C}[\alpha, \beta, \gamma]$ (q^1 are defined in Proposition 3).

Proof. Suppose first that $g \geq 2$. Granted Theorem 5, [17, Theorem 2.2] implies that $J_g = (R^1, R^2, R^3)$, where $R^1 = q^1 + \text{lower order terms of degrees } \deg q^1 - 4r, r > 0$, as polynomials in $\mathbb{C}[\alpha, \beta, \gamma]$ (it can always be arranged so that these elements are in the basis, as $g \geq 2$, see [16, Proposition 4.2]). So R^1 is equal to $q^1 + \text{lower order terms.}$ The case $g = 1$ is computed directly in Lemma 11.
As pointed out in [15], the key result to find the generators of J_g is the following inclusion of ideals.

Lemma 9. $J_{g+1} \subset J_g$, for all $g \geq 1$.

Proof. We shall prove this through an excision argument for Donaldson invariants. Let Σ_g be a Riemann surface of genus g and consider

$$\Sigma_{g+1} \subset A_g = \Sigma_g \times D^2 \subset S = \Sigma_g \times \mathbb{C}P^1$$

where Σ_{g+1} is given as Σ_g with a trivial handle of genus 1 added internally. This means that we take a point $p \in \Sigma_g$ and a small 4-ball B in S centered at p such that $B \cap \Sigma_g$ is a 2-ball in Σ_g. Then we substitute $B \cap \Sigma_g$ with an embedded 2-torus in B with a small ball removed, whose boundary coincides with $\partial(B \cap \Sigma_g) = \partial B$. This produces Σ_{g+1}. Then the map $H_*(\Sigma_{g+1}) \to H_*(\Sigma_g)$ induces $\mathbb{A}(\Sigma_{g+1}) \to \mathbb{A}(\Sigma_g)$ which sends $(z, \beta, \gamma) \mapsto (z, \beta, \gamma)$. Let $A_{g+1} = \Sigma_{g+1} \times D^2 \subset A_g$ be a (small) tubular neighbourhood of Σ_{g+1} in S. Now we put S^0 for the complement of the interior of A_{g+1} in S, so that $S = S^0 \cup \Sigma_{g+1} \times \mathbb{C}P^1$. Recall that we have also the decomposition $S = A_g \cup \Sigma_g \times \mathbb{C}P^1$.

Now let $z \in J_{g+1}$. Then $\phi^w(\Sigma_{g+1} \times D^2, z) = 0$. So for any $w \in \mathbb{A}(\Sigma_g)$, $s \in \mathcal{S}$,

$$D_S^{(w, \Sigma)}(z, s) = \langle \phi^w(\Sigma_{g+1} \times D^2, z), \phi^w(S^0, s) \rangle = 0.$$

Therefore $D_S^{(w, \Sigma)}(z, s) = \langle \phi^w(\Sigma_g \times D^2, z), \phi^w(\Sigma_g \times D^2, z) \rangle = 0$, for any $s \in \mathcal{S}$. So $\phi^w(\Sigma_g \times D^2, z) = 0$ and $z \in J_g$.

Theorem 10. There are numbers $c_{g+1}, d_{g+1} \in \mathbb{C}$ such that, for all $g \geq 1$,

$$\begin{align*}
R_{g+1}^1 &= \varepsilon R_g^1 + g^2 R_g^2 \\
R_{g+1}^2 &= (\beta + c_{g+1}) R_g^1 + \frac{2g}{g + 1} R_g^2 \\
R_{g+1}^3 &= \gamma R_g^1 + d_{g+1} R_g^2
\end{align*}$$

Proof. We follow almost literally the argument of Siebert and Tian [15, Proposition 3.2]. As $R_g^1 \in J_{g+1} \subset J_g$ is a relation on degree $2g + 2$, it is a linear combination of εR_g^1 and R_g^2. Looking at the leading terms (Proposition 3), we have $R_{g+1}^1 = \varepsilon R_g^1 + g^2 R_g^2$. Analogously, R_{g+1}^2 is a combination of βR_g^1, εR_g^1 and R_g^1. Only the term R_g^2 has degree less than $2g + 4$, so $R_{g+1}^2 = \beta R_g^1 + (\gamma g + 1) R_g^2 + c_{g+1} R_g^1$, for an unknown coefficient c_{g+1}. In the same fashion, R_{g+1}^3 is a combination of γR_g^1 plus a linear combination of R_g^2 and εR_g^1. Adding a suitable multiple of R_g^1 (which is always allowed without loss of generality), we have $R_{g+1}^3 = \gamma R_g^1 + d_{g+1} R_g^2$.

Lemma 11. The starting relations (for $g = 1$) are $R_1^1 = \varepsilon$, $R_1^2 = \beta - 8$ and $R_1^3 = \gamma$.

Proof. HF^*_1 is of dimension 1, i.e. $HF^*_1 = \mathbb{C}$ (see [3, 9]). Let S be the K3 surface and fix an elliptic fibration for S, whose fibre is $\Sigma = \mathbb{T}^2$. The Donaldson invariants are, for $w \in H^2(S; \mathbb{Z})$ with $w \cdot \Sigma = 1 \pmod 2$ (see [9]),

$$D_S^{(w, \Sigma)}(e^D) = - e^{-Q(D)/2}.$$

Then $D_S^{(w, \Sigma)}(1) = -1$ and $D_S^{(w, \Sigma)}(\Sigma^d) = 0$, for $d > 0$. Also from [11, Remark 4], $D_S^{(w, \Sigma)}(\Sigma) = 2$. Let S^0 be the complement of an open tubular neighbourhood of Σ in S. Then $\phi^w(S^0, 1)$
generates HF^*_g and $\phi^*(S^*, \Sigma) = 0$, $\phi^*(S^*, x) = -2\phi^*(S^*, 1)$ and $\phi^*(S^*, \gamma_1\gamma_2) = 0$, i.e. $x = 0$, $\beta - 8 = 0$ and $\gamma = 0$ in HF^*_g (recall (4)).

Proposition 12. For $g \geq 2$, there exists a non-zero vector $v \in HF^*_g$ such that

$$xv = \begin{cases} 4(g - 1)v, & g \text{ even} \\ 4(g - 1)\sqrt{-1}v, & g \text{ odd} \end{cases}$$

$$\beta v = (-1)^g - 18v$$

$$\gamma v = 0.$$

Proof. We shall construct such a vector as the relative invariants of an open four-manifold X^* with boundary $\partial X^* = Y = \Sigma \times S^1$, where the closed four-manifold $X = X^* \cup \gamma A$ is of simple type with $b^+ > 1$ and $b_1 = 0$. For concreteness, let X be the manifold C_g from [11, Definition 25]. We recall its construction. Let S_g denote the elliptic surface of geometric genus $p_g = g - 1$ and with no multiple fibres. It contains a section σ which is a rational curve of self-intersection $-g$. Let F be the elliptic fibre. Then $\sigma + gF$ can be represented by an embedded Riemann surface Σ of genus g and self-intersection g. Blow-up S_g at g points in Σ to get B_g with an embedded Riemann surface Σ_g of genus g and self-intersection zero. Then put $X = C_g = B_g \# \Sigma_g$ (the double of B along Σ). By [11, Proposition 27], X is of simple type and $D^w_X(e^2) = D^w_X((1 + x/2)e^2) = -2^g - 5e^{Q(2)}/2e^{K_{X}} + (-1)^g2^g - 5e^{Q(2)}/2e^{-K_X}$, where $K \in H^2(X, \mathbb{Z})$ satisfies $K \Sigma_g = 2g - 2$ ($w \in H^2(C_g, \mathbb{Z})$ is a particular element, which we do not need to specify here). Let us suppose from now on that g is even, the other case being similar. By [11, Proposition 3],

$$D^w_X((x^2) = -2^g - 5e^{Q(2)}/2e^{K_{X}} + (-1)^g2^g - 5e^{Q(2)}/2e^{-K_X}.$$

Consider X^* the complement of a small open tubular neighbourhood of Σ_g in X, so that $X = X^* \cup \gamma A$. Then we set $v = \phi^*(X^*, \Sigma + 2g - 2) \in HF^*(\Sigma \times S^1) = HF^*_g$. Let us prove that this is the required element. For any $z_s = \Sigma^a x^m \gamma_1 \cdots \gamma_k$, it is [11, Remark 4],

$$\langle v, e_s \rangle = D^w_X((\Sigma + 2g - 2)z_s) = \begin{cases} 0, & r > 0 \\ -2^g - 4(2g - 2)^{r - 1}2^m, & r = 0 \end{cases}$$

Then $\langle xv, e_s \rangle = \langle \phi^*(X^*, 2\Sigma (\Sigma + 2g - 2)), \phi^*(A, z_s) \rangle = D^w_X((\Sigma + 2g - 2)2 \Sigma z_s) = (4g - 4)\langle v, e_s \rangle$, for all $s \in S$. Then $xv = (4g - 4)v$. Analogously, $\gamma v = 0$ and $\beta v = -8v$.

Notation 13. We set $R^1_0 = 1$, $R^2_0 = 0$ and $R^3_0 = 0$.

Theorem 14. For all $g \geq 1$, $c_g = (-1)^g 8$ and $d_g = 0$.

Proof. The result is true for $g = 1$ by Lemma 11 and Notation 13. Suppose it is true for $1 \leq r \leq g$, and let us prove it for $g + 1$. By Proposition 12, there exists $v \in HF^*_{g+1}$ with $\beta v = (-1)^g 8v$, $\gamma v = 0$ and $xv = 4q\sqrt{-1}v$ if g is odd and $xv = 4q\sqrt{-1}v$ if g is even.

In first place, $\gamma v = 0$ implies $R^3_2v = 0$, for $1 \leq r \leq g$. In second place, $\beta v = (-1)^g 8v$ implies

$$R^2_gv = (\beta + (-1)^g 8)R^1_{g-1}v = (-1)^g 16R^1_{g-1}v$$

$$R^2_{g-1}v = (\beta + (-1)^{g-1} 8)R^1_{g-2}v = 0$$
\[R_{g-2}^2 = (-1)^g 16 R_{g-3}^4 \vphantom{R_{g-2}^2} \\
R_{g-3}^2 = 0, \]

In the third place, \(R_{g-1}^1 v = x R_{g-1}^1 v + (g-1)^2 R_{g-2}^2 v = x R_{g-1}^1 v, \) \(R_{g-2}^1 v = x R_{g-3}^2 v, \) \(\ldots \) Also
\[R_{g-1}^1 v = x R_{g-2}^1 v + (g-2)^2 R_{g-2}^2 v = (x^2 + (g-2)^2(1-1)^2) R_{g-3}^2 v. \]

So finally,
\[R_{g-1}^1 v = \begin{cases} (x^2 + (g-1)^2 16(g-2)^2 \ldots (x^2 + (g-1)^2 16 2^2) v, & g \text{ odd} \\ (x^2 + (g-1)^2 16(g-2)^2) \ldots (x^2 + (g-1)^2 16 2^2) v, & g \text{ even} \end{cases} \]

As a conclusion \(R_{g-1}^1 v = \lambda v, \) with \(\lambda \neq 0, \) and
\[R_{g}^1 v = \lambda R_{g-1}^1 v \\
R_{g}^2 v = (-1)^g 16 R_{g-1}^2 v \\
R_{g}^3 v = 0. \]

As \(v \in HF^*_{g+1}, \) we have \(R_{g+1}^1 v = 0, R_{g+2}^2 v = 0 \) and \(R_{g+3}^3 v = 0. \) Evaluate the equations from Theorem 10 on \(v \) to get \(c_{g+1} = (-1)^g 18 + 8 \) and \(d_{g+1} = 0. \]

Corollary 15. We have \(\gamma J_g \subset J_{g+1} \subset J_g, \) for all \(g \geq 1. \)

Proof. The second inclusion is Lemma 9. For the first inclusion, note that \(\gamma R_{g}^1 = R_{g+1}^2 \in J_{g+1} \) by the third equation in Theorem 10. Then multiplying the first two equations in Theorem 10 we get that \(\gamma R_{g}^2, \gamma R_{g}^3 \in J_{g+1}. \)

Using this corollary in Lemma 7, we have finally proved that

Theorem 16. The Floer cohomology of \(\Sigma \times S^1, \) for \(\Sigma = \Sigma_g \) a Riemann surface of genus \(g, \) has a presentation

\[HF^*(\Sigma \times S^1) = \bigoplus_{k=0}^g \Lambda_k^* H^3 \otimes C[z, b, \beta]/J_{g-k}. \]

where \(J_r = (R_r^1, R_r^2, R_r^3) \) and \(R_r^i \) are defined recursively by setting \(R_0^1 = 1, R_0^2 = 0, R_0^3 = 0 \) and putting for all \(r \geq 0 \)

\[
\begin{align*}
R_{r+1}^1 &= xR_r^1 + r^2 R_r^2 \\
R_{r+1}^2 &= (\beta + (-1)^r + 1) R_r^1 + \frac{2r}{r+1} R_r^2 \\
R_{r+1}^3 &= \gamma R_r^1.
\end{align*}
\]

Remark 17. The presentation obtained for \(HF^*_g \) is the conjectural presentation for \(QH^*(\Sigma_g) \) (see [15]).

Corollary 18. \(\ker(\gamma \cdot (HF^*_g)) \rightarrow (HF^*_g)) = J_{g-1}/J_g \subset C[z, b, \beta, \gamma]/J_{g} = (HF^*_g)_I. \)

Proof. By Corollary 15, \(\gamma \) factors as
\[C[z, b, \gamma]/J_g \rightarrow C[z, b, \gamma]/J_{g-1} \rightarrow C[z, b, \gamma]/J_{g}. \]
The second map is a monomorphism since $x^a y^b z^c$, $a + b + c < g - 1$, form a basis for $\mathbb{C}[x, y, z]/J_{g-1}$, and their image under γ are linearly independent in $\mathbb{C}[x, y, z]/J_g$. The corollary follows.

For any $F \in \mathbb{C}[x, y, z]$ define the expectation value by $\langle F \rangle_g = \langle F, 1 \rangle_{HF^*_g}$, where $1 \in HF^*_g$ is the unit element. Therefore $\langle F_1 F_2 \rangle_{HF^*_g} = \langle F_1, F_2 \rangle_{g'}$.

COROLLARY 19. For any $F \in \mathbb{C}[x, y, z]$, $\langle g F \rangle_g = 2g \langle F \rangle_{g-1}$.

Proof. By Corollary 15, the above formula holds for any $F \in J_{g-1}$, as both sides are zero. So it is enough to check it for a set of elements generating HF^*_g, i.e. for $F_{abc} = x^a y^b z^c$, $a + b + c < g - 1$. If $(a, b, c) \neq (0, 0, g - 2)$, it is $\langle F_{abc} \rangle_{g-1} = 0$ and $\langle g F_{abc} \rangle_g = 0$ by degree reasons. Now $\langle g^2 \rangle_{g-1} = -\langle x^2 \rangle_{g-1} = 0$ and $\langle g \rangle_{g-1} = 0$ by degree reasons. Therefore $\langle x^2 \rangle_{g-2} = 2g \langle x^2 \rangle_{g-3}$. Hence the corollary follows from $\langle x^2 \rangle_{g-2} = 2g \langle x^2 \rangle_{g-3}$. (See [18]).

5. LOCAL RING DECOMPOSITION OF $HF^*_g(\Sigma \times S^1)$

In [1] it is asserted that the only eigenvalues of the action of $\mu(x)$, $\mu(y)$ and $\mu(z)$ on $HF^*_g(\Sigma \times S^1)$ are the ones given by looking at the Donaldson invariants of the manifold $X = \Sigma \times \mathbb{T}^2$ i.e. if we denote by $W \subset HF^*_g$ the image $\phi(X, \partial(\Sigma))$, where $X = X^0 \cup \partial(X)$, then x, y, z act on W and their eigenvalues are all the eigenvalues of their action on HF^*_g. The following result is a proof of this physical assertion.

PROPOSITION 20. The eigenvalues of (x, y, z) in $(HF^*_g)_f$ are $(0, 8, 0)$, $(\pm 4, -8, 0)$, $(\pm 8, 0, 8)$, $(\pm 8, \pm 1, \pm 8)$, $(\pm 4(g - 1), \pm 1, \pm 8)$, $(\pm 1\gamma, \pm 1, \pm 8)$, where $\gamma = 0, 1, 2, 3, 4, 5$.

Proof. Put $V = (HF^*_g)_f$. As $\gamma J_{g-1} \subset J_g$, one has $\gamma^g \in J_g$, i.e. $\gamma^g = 0$ in V, so the only eigenvalue of γ is zero. To compute the eigenvalues of x, y, z we can restrict to $V/\gamma V$ if p is a polynomial with $p(x) = 0$ in $V/\gamma V$, then $p(x)$ is a multiple of γ in V and $p(x)^g = 0$ in V. Now the ideal of relations of V can be written as $J_g = \langle \zeta_0, \zeta_1, \zeta_2 \rangle$, where $\zeta_0 = 0, 1, \zeta_{-1} = 0, \zeta_{-2} = 0$ and $\zeta_{r+1} = \zeta_r^2 + r^2(\beta + (-1)^g8)\zeta_{r-1} + 2r(r - 1)\gamma\zeta_{r-2}$, for all $r \geq 0$. This form of the relations follows from rewriting as

$$ R_1^g = \zeta_g $$

$$ R_2^g = \frac{1}{g^2}(\zeta_{g+1} - \zeta_g) $$

$$ R_3^g = \frac{1}{2g(g + 1)}(\zeta_{g+2} - \zeta_{g+1} - (g + 1)^2(\beta + (-1)^g8)\zeta_g). $$

Therefore

$$ V/\gamma V = \mathbb{C}[x, y, z]/(\zeta_{g+1}, \zeta_g) $$

where $\zeta_0 = 1, \zeta_{-1} = 0, \zeta_{r+1} = \zeta_r^2 + r^2(\beta + (-1)^g8)\zeta_{r-1}$, for $r \geq 0$. From $r^2(\beta + (-1)^g8)\zeta_{r+1} = \zeta_{r+1} - \zeta_r$ we infer that $(\beta + (-1)^g8)\zeta_{r-1} \in (\zeta_r, \zeta_{r+1})$. Continuing in this way,

$$(\beta + (-1)^g8)(\beta + (-1)^g8) \cdots (\beta - 8) \in (\zeta_{g}, \zeta_{g+1})$$
which implies that the only eigenvalues of α in $V/\gamma V$, and hence in V, are ± 8. Let us study the eigenvalues of α for $\beta = 8$, $\gamma = 0$. Again we only need to study $V/\gamma (V, \beta - 8) = V = \mathbb{C}[x]/(\xi_0, \xi_{r+1})$, where now $\xi_0 = 1$, $\xi_{-1} = 0$, $\xi_{r+1} = \xi_r + r^2(8 + (-1)^8)\xi_{r-1}$, for $r \geq 0$. Then

$$
\begin{align*}
\xi_r &= (x^2 + (r-2)^2)16 \cdots (x^2 + 2^16)x^2, \quad r \text{ even} \\
\xi_r &= (x^2 + (r-1)^2)16 \cdots (x^2 + 2^16)x, \quad r \text{ odd}
\end{align*}
$$

from where the eigenvalues of α will be $0, \pm 8\sqrt{-1}, \pm 16\sqrt{-1}, \ldots, \pm 8[\sqrt{3-1}]\sqrt{-1}$. We leave the other case to the reader.

Remark 21. As mentioned in [1], by the very definition of $\gamma = -2\sum_{i=1}^{n}(A, \gamma, \gamma_1+a)$, it is $\gamma^{e+1} = 0$ in HF^*_g, so the only eigenvalue of γ is zero.

Proposition 20 says that $(HF^*_g)_H$ can be decomposed as a sum of local artinian rings

$$(HF^*_g)_H = \bigoplus_{i=(g-1)}^{g-1} R_{g,i} \tag{6}$$

where $R_{g,i}$ is a local artinian ring with maximal ideal $m = (x - 4i, \beta - (-1)^8, \gamma)$ if i is odd, $m = (x - 4i\sqrt{-1}, \beta - (-1)^8, \gamma)$ if i is even. Also HF^*_g is decomposed as

$$HF^*_g = \bigoplus_{k=0}^{g} \bigoplus_{i=(g-k-1)}^{g-k-1} \Lambda^k_0 H^3 \otimes R_{g-k,i} = \bigoplus_{k=0}^{g} \bigoplus_{i=(g-1)}^{g-1} \Lambda^k_0 H^3 \otimes R_{g-k,i} \tag{7}$$

We recall from Lemma 11 that $HF^*_1 = \mathbb{C}[x, \beta, \gamma]/(x, \beta - 8, \gamma)$. Let us see the next cases.

Example 22. For $g = 2$, $J_2 = (x^2 + \beta - 8, \alpha(\beta + 8), x\gamma)$. In $(HF^*_g)_H$, $\gamma = -x(\beta + 8)$ and $\gamma x = 0$. Hence $x^2(\beta + 8) = 0$. Now $x^2 = -x(\beta - 8)$ so $\beta(8 + \beta) = 0$ and $x^2(8 - 16) = 0$. Also $\gamma J_1 \subset J_2$ implies $\gamma x = \gamma^2 = \gamma(\beta - 8) = 0$. Finally $(\gamma + 16\gamma, x^2 - 16) = -16\gamma + 16(x^2 - 16) = -16(\gamma + x(\beta + 8)) = 0$. All together proves

$$(HF^*_g)_H = \mathbb{C}[x, \beta, \gamma]/(x^2, \beta - 8, \gamma + 16\gamma) \oplus \mathbb{C}[x, \beta, \gamma]/(x^2, \beta - 8, \gamma + 16\gamma) \oplus \mathbb{C}[x, \beta, \gamma]/(x^2, \beta - 8, \gamma + 16\gamma)$$

We want to remark that $HF^*_g \cong QH^*(A_2\gamma)$ (see [12, Example 5.3] for a presentation of the latter ring). The isomorphism sends $x \mapsto h_2, \beta \mapsto -4(h_4 - 1), \gamma \mapsto 4(h_6 - h_2)$, where h_2, h_4, h_6 are the generators of QH^2, QH^4, QH^6, respectively. This was conjectured in [9, Conjecture 1.22].

Example 23. For $g = 3$, $J_3 = (x(x^2 + \beta - 8) + 4(x\beta + 8x + \gamma), (\beta - 8) (x^2 + \beta + 8) + \frac{4}{3} x\gamma, \gamma(x^2 + \beta - 8))$. Put $V = (HF^*_g)_H$. Then

$$V/\gamma V = \mathbb{C}[x, \beta]/(x(x^2 + \beta - 8) + 4(x\beta + 8x), (\beta - 8)(x^2 + \beta - 8))$$

In $V/\gamma V$, the first relation yields $-5x(\beta - 8) = x^3 + 64x$ and the second $x(\beta - 8)(x^2 + \beta - 8) = 0$. This implies $x(x^2 - 16)(x^2 + 64) = 0$. Also $(\beta - 8)x(x^2 - 16) = 0$. Using $(\beta - 8)x^2 = -(\beta - 8)^2$, we get $x(\beta - 8)(\beta + 8) = 0$.

Therefore, in V, $x(x^2 - 16)(x^2 + 64)$ and $x(\beta - 8)(\beta + 8)$ are multiples of γ. As $\gamma J_2 \subset J_3$, we have $\gamma x(x^2 - 16) = 0$ and $\gamma x^2(\beta + 8) = 0$ by Example 22. So $x^2(x^2 - 16)(x^2 + 64) = 0$, 526 V. Muñoz
\[x^3(x^2 - 16) (\beta - 8) (\beta + 8) = 0 \] and \[x^3(\beta - 8) (\beta + 8)^2 = 0. \] It can be checked now that

\[
(HF^*_\beta)_I = \frac{\mathbb{C}[x, \beta, \gamma]}{(x - 8\sqrt{-1}, \beta - 8, \gamma)} \oplus \frac{\mathbb{C}[x, \beta, \gamma]}{((x - 4)^2, \gamma + 3(\beta + 8), \gamma - 12(x - 4))}
\]

\[
\oplus \frac{\mathbb{C}[x, \beta, \gamma]}{(x^3, x(\beta - 8), (\beta - 8)^2 - \frac{b^2}{4} x^2, \gamma + 16x)} \oplus \frac{\mathbb{C}[x, \beta, \gamma]}{((x + 4)^2, \gamma - 3(\beta + 8), \gamma - 12(x + 4))}
\]

\[
\oplus \frac{\mathbb{C}[x, \beta, \gamma]}{(x + 8\sqrt{-1}, \beta - 8, \gamma)}
\]

6. CONJECTURE

We state the following conjecture, that first occurred to Paul Seidel and the author in mid-1996.

Conjecture 24. The decomposition in equation (7) is

\[
HF^*_\beta \cong H^*(s^\beta \Sigma) \oplus H^*(s^1 \Sigma) \oplus \cdots \oplus H^*(s^g \Sigma)
\]

\[
\oplus H^*(s^{g-1} \Sigma) \oplus H^*(s^{g-2} \Sigma) \oplus \cdots \oplus H^*(s^0 \Sigma)
\]

where \(s^i \Sigma \) is the \(i \)th symmetric product of \(\Sigma \). Here \(H^*(s^i \Sigma) \) is isomorphic to the eigenspace of eigenvalues \(\pm 4(g - 1 - i) \sqrt{-1} \gamma^{-1}, (-1)^{g-1-i} (8, 0) \). The isomorphism respects only \(\mathbb{Z}/2\mathbb{Z} \)-grading and is \(\text{Diff}(\Sigma) \)-equivariant.

Simple computations establish that the dimensions of both vector spaces appearing in Conjecture 24 are the same, i.e. \(g2^g \). The Euler characteristic are both vanishing. Moreover the dimensions of the invariant parts coincide \((\gamma^2 \frac{1}{2})\). Examples 22 and 23 agree with the conjecture.

A deeper reason for the above conjecture is the fact that \(HF^*_\beta \) is the space for a gluing theory of Donaldson invariants associated to the three manifold \(Y = \Sigma \times S^1 \). The gluing theory of Seiberg–Witten invariants should be based on the Seiberg–Witten–Floer homology groups of \(\Sigma \times S^1 \), which are indexed by a line bundle \(L \) (the determinant line bundle of the spin^c-structure on \(Y \)). The only possibilities are \(c_1(L) = \pm 2(g - 1 - i) \text{PD} [S^1] \), \(0 \leq i \leq g - 1 \) (see [9, Section 6]). It is believed that the Seiberg-Witten-Floer groups for \(L \) are isomorphic to \(H^*(s^i \Sigma) \).

Acknowledgements—I am very grateful to Bernd Siebert and Gang Tian for providing me with a copy of [15] which was very enlightening. In particular, the proof of Theorem 10 is due entirely to them. Thanks to the organization of the CIME Course on Quantum Cohomology held in Cetraro (Italy, 1997) for inviting me. Also discussions with Paul Seidel were useful. Finally, thanks to the referee for useful remarks.

REFERENCES

Departamento de Álgebra, Geometría y Topología
Facultad de Ciencias
Universidad de Málaga
29071 Málaga, Spain