On the zeros of Bloch functions

BY DANIEL GIRELA†

Análisis Matemático, Facultad de Ciencias, Universidad de Málaga,
29071 Málaga, Spain

e-mail: girela@anamat.cie.uma.es

MARIA NOWAK

Instytut Matematyki UMCS, Plac M. Curie-Skłodowskiej 1, 20-301 Lublin, Poland

e-mail: nowakm@golem.umcs.lublin.pl

AND PIOTR WANIURSKI

Instytut Matematyki UMCS, Plac M. Curie-Skłodowskiej 1, 20-301 Lublin, Poland

e-mail: peter@golem.umcs.lublin.pl

(Received 30 November 1998; revised 14 June 1999)

Abstract

A function f, analytic in the unit disc Δ, is said to be a Bloch function if
$$\sup_{z \in \Delta} (1-|z|^2)|f'(z)| < \infty.$$ In this paper we study the zero sequences of non-trivial Bloch functions. Among other results we prove that if f is a Bloch function with $f(0) \neq 0$ and $\{z_k\}$ is the sequence of ordered zeros of f, then
$$\prod_{k=1}^{N} \frac{1}{|z_k|} = O((\log N)^{1/2}), \quad \text{as } N \to \infty$$

and
$$\sum_{|z_k| > 1 - \frac{1}{e}} (1 - |z_k|) \left(\log \log \frac{1}{1 - |z_k|} \right)^{-\alpha} < \infty, \quad \text{for all } \alpha > 1.$$

We will also prove that (ii) is best possible even for the little Bloch space B_0. To this end we construct a function $f \in B_0$ whose zero sequence $\{z_k\}$ satisfies
$$\sum_{|z_k| > 1 - \frac{1}{e}} (1 - |z_k|) \left(\log \log \frac{1}{1 - |z_k|} \right)^{-1} = \infty.$$

We also consider analogous problems for some other related spaces of analytic functions.

† D.G. has been supported in part by a grant from ‘El Ministerio de Educación y Cultura, Spain’ (PB97-1081) and by a grant from ‘La Junta de Andalucía’.
Let Δ denote the unit disc $\{ z \in \mathbb{C} : |z| < 1 \}$. If $0 < r < 1$ and g is a function which is analytic in Δ, we set
\[
M_p(r,g) = \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} |g(re^{i\theta})|^p \, d\theta \right)^{1/p}, \quad 0 < p < \infty,
\]
\[
M_\infty(r,g) = \max_{|z|=r} |g(z)|.
\]
For $0 < p < \infty$, the Hardy space H^p consists of those functions f analytic in Δ for which
\[
\|f\|_{H^p} = \sup_{0 < r < 1} M_p(r,f) < \infty.
\]
A function f analytic in Δ is said to be a Bloch function if
\[
\|f\|_B = |f(0)| + \sup_{z \in \Delta} (1 - |z|^2)|f'(z)| < \infty.
\]

The space of all Bloch functions will be denoted by B. Clearly, we have $H^\infty \subset B$.

We mention [1] as a general reference for the theory of Bloch functions.

In this paper we shall be mainly concerned with the zeros of Bloch functions. It is well known (see [3], chapter 2) that a sequence $\{ z_k \}$ is the zero set of an H^p-function, $0 < p \leq \infty$, if and only if it satisfies the Blaschke condition
\[
\sum_{k=1}^\infty (1 - |z_k|) < \infty.
\]

The Bergman space A^p, $0 < p < \infty$, is the class of functions f analytic in Δ for which $|f(z)|$ belongs to $L^p(\Delta)$. Given $f \in A^p$, we define its A^p-norm as follows
\[
\|f\|_{A^p} = \left(\frac{1}{\pi} \int_\Delta |f(z)|^p \, dx \, dy \right)^{1/p}.
\]
It is clear that $H^p \subset A^p$ for all $p > 0$. The problem of describing the zero sets of A^p-functions has been extensively studied in [8] and [9].

If f is an analytic function in Δ, $f \neq 0$, and $\{ z_k \}_{k=1}^\infty$ is the sequence of its zeros, repeated according to multiplicity and ordered so that $|z_1| \leq |z_2| \leq |z_3|, \ldots$, then $\{ z_k \}$ is said to be the sequence of ordered zeros of f.

Among other results, let us recall that of Horowitz [8]. He proved that if f is an A^p-function, $0 < p < \infty$, with $f(0) \neq 0$ and $\{ z_k \}$ is its sequence of ordered zeros then
\[
\prod_{k=1}^N \frac{1}{|z_k|} = O(N^{1/p}), \quad \text{as } N \to \infty. \tag{1.1}
\]

Horowitz also proved (see [8, corollary 4.11]), that the exponent $1/p$ cannot be decreased in (1.1). However, our first result shows that $O(N^{1/p})$ can be replaced by $o(N^{1/p})$.

Theorem 1. Let $0 < p < \infty$ and let $f \in A^p$ with $f(0) \neq 0$. Let $\{ z_k \}_{k=1}^\infty$ be the sequence of ordered zeros of f. Then
\[
\prod_{k=1}^N \frac{1}{|z_k|} = o(N^{1/p}), \quad \text{as } N \to \infty. \tag{1.2}
\]
Let us define A^0 as the space of all functions f analytic in Δ and such that
\[M_\infty(r, f) = O\left(\log \frac{1}{1 - r}\right), \quad \text{as } r \to 1. \]

Obviously
\[\mathcal{B} \subset A^0 \subset \bigcap_{0 < p < \infty} A^p. \]

The function $f(z) = (\log(1/1 - z))^2$ belongs to $\bigcap_{0 < p < \infty} A^p$, but not to A^0. Hence, the inclusion $A^0 \subset \bigcap_{0 < p < \infty} A^p$ is strict. We shall see later that the inclusion $\mathcal{B} \subset A^0$ is also strict.

Our next result is an analogue of (1·1) for the spaces \mathcal{B} and A^0.

Theorem 2. Let f be an analytic function in Δ with $f(0) \neq 0$ and let $\{z_k\}_{k=1}^\infty$ be the sequence of ordered zeros of f.

(i) If $f \in A^0$, then
\[\prod_{k=1}^N \frac{1}{|z_k|} = O(\log N), \quad \text{as } N \to \infty. \tag{1·3} \]

(ii) If $f \in \mathcal{B}$, then
\[\prod_{k=1}^N \frac{1}{|z_k|} = O((\log N)^{\frac{1}{2}}), \quad \text{as } N \to \infty. \tag{1·4} \]

We do not know whether or not (1·4) is sharp for the space of Bloch functions \mathcal{B}. However (1·3) is sharp for the space A^0. Indeed, we can prove that $O(\log N)$ cannot be replaced by $o(\log N)$ in (1·3).

Theorem 3. There exists a function $f \in A^0$ with $f(0) \neq 0$ whose ordered zeros $\{z_k\}$ satisfy
\[\prod_{k=1}^N \frac{1}{|z_k|} = o(\log N), \quad \text{as } N \to \infty. \tag{1·5} \]

We note that if f is the function given in Theorem 3, then it does not satisfy (1·4) and hence, Theorem 2 implies $f \notin \mathcal{B}$. This shows that, as mentioned above, the inclusion $\mathcal{B} \subset A^0$ is strict.

Two important subspaces of the space of Bloch functions \mathcal{B} are \mathcal{B}_0 and \mathcal{B}_1. The space \mathcal{B}_0 consists of those $f \in \mathcal{B}$ for which
\[(1 - |z|)|f'(z)| \to 0, \quad \text{as } |z| \to 1. \]
Equivalently, \mathcal{B}_0 is the closure of polynomials in the Bloch norm (cf. [1, theorem 2·1]).

The space \mathcal{B}_1 consists of those $f \in \mathcal{B}$ for which the following condition is satisfied:

If $\{z_n\} \subset \Delta$ and $|f(z_n)| \to \infty$, then $(1 - |z_n|)|f'(z_n)| \to 0$.

Clearly,
\[\mathcal{B}_0 \subset \mathcal{B}_1 \subset \mathcal{B}. \tag{1·6} \]

If $f(z) = \sum_{n=0}^\infty a_n z^n \in \mathcal{B}_0$, then $a_n \to 0$. By contrast, Fernández [4, 5] constructed functions in \mathcal{B}_1 whose coefficients do not tend to zero. Important examples of Bloch
functions are given by power series with Hadamard gaps, that is, power series of the form
\[f(z) = \sum_{k=0}^{\infty} a_k z^{n_k}, \] analytic in \(\Delta \) with \(n_{k+1} \geq \lambda n_k \), for all \(k \) and some constant \(\lambda > 1 \).

For such an \(f \) we have [1, p. 19] \(f \in \mathcal{B} \) if and only if \(\sup |a_k| < \infty \) and then by [1, 13]
\[f \in \mathcal{B}_0 \iff f \in \mathcal{B}_1 \iff a_k \to 0. \]

With these results in mind, it is clear that the inclusions in (1·6) are strict.

Our next result shows that (1·3) can be improved for \(\mathcal{B}_1 \)-functions.

Theorem 4. Let \(f \in \mathcal{B}_1 \) with \(f(0) \neq 0 \) and let \(\{z_k\}_{k=1}^{\infty} \) be the sequence of ordered zeros of \(f \). Then
\[\prod_{k=1}^{N} \frac{1}{|z_k|} = o((\log N)^1), \quad \text{as } N \to \infty. \quad (1·7) \]

The zeros of a Bloch function need not satisfy the Blaschke condition. Anderson, Clunie and Pommerenke proved in [1] that if \(f \) is a Bloch function, \(D \) is a disc that touches \(\partial \Delta \) from inside and \(\{z_n\} \) is the sequence of zeros of \(f \) then
\[\sum_{z_n \in D} (1 - |z_n|) < \infty. \]

Next we consider the question of finding a substitute of the Blaschke condition valid for the zero sequences of Bloch functions. We can prove the following results.

Theorem 5. Let \(f \in A^0, f \neq 0 \), and let \(\{z_k\}_{k=1}^{\infty} \) be the ordered sequence of zeros of \(f \). Then
\[\sum_{|z_k| > 1 - \frac{1}{\alpha}} (1 - |z_k|) \left(\log \log \frac{1}{1 - |z_k|} \right)^{-\alpha} < \infty, \quad (1·8) \]
for all \(\alpha > 1 \).

Since \(\mathcal{B} \subset A^0 \) (1·8) also holds if \(f \in \mathcal{B} \) and \(\alpha > 1 \). Next, we shall show that the conclusion of Theorem 5 is best possible even for the space \(\mathcal{B}_0 \).

Theorem 6. There exists a function \(f \in \mathcal{B}_0, f \neq 0 \), whose ordered zeros \(\{z_k\}_{k=1}^{\infty} \) satisfy
\[\sum_{|z_k| > 1 - \frac{1}{\alpha}} (1 - |z_k|) \left(\log \log \frac{1}{1 - |z_k|} \right)^{-1} = \infty. \quad (1·9) \]

The proofs of Theorems 1, 2, 3 and 4 will be presented in Section 2. The proofs of Theorems 5 and 6 will be included in Section 3. In what follows we assume that \(C \) denotes a positive constant (which may depend on \(p \) and \(f \) but not on \(r, N, n, k, \ldots \)) and which may be different at each occurrence.
Our proofs of Theorems 1, 2 and 4 will be based on the following result due to Horowitz.

Lemma A [8, p. 695]. Let \(f \) be an analytic function in \(\Delta \) with \(f(0) \neq 0 \) and let \(\{z_k\} \) be the sequence of its ordered zeros. Then for \(0 < p < \infty \), for \(0 \leq r < 1 \) and for all positive integers \(N \),

\[
|f(0)|^p \prod_{k=1}^{N} \frac{r^p}{|z_k|^p} \leq M_p(r, f)^p. \tag{2.1}
\]

It is worth pointing out that Lemma A is strongest when we choose \(N \) with \(|z_n| < r \). The result for larger values of \(N \) is a simple consequence of this case.

Proof of Theorem 1. Let \(0 < p < \infty \) and let \(f \in A^p \) with \(f(0) \neq 0 \). Let \(\{z_k\}_{k=1}^{\infty} \) be its sequence of ordered zeros. If \(f \in A^0 \) then, clearly,

\[
M_1(r, f) = O\left(\log \frac{1}{1-r}\right), \quad \text{as } r \to 1.
\]

Using Lemma A with \(p = 1 \) and \(r = 1 - (1/N) \), we have

\[
|f(0)| \left(1 - \frac{1}{N}\right)^N \prod_{n=1}^{N} \frac{1}{|z_n|} \leq C (\log N).
\]

This gives (1.3).

If \(f \in \mathcal{H} \), then according to [2] and [10] (see also [13, p. 186]) we have for \(0 < p < \infty \),

\[
M_p(r, f) = O\left(\left(\log \frac{1}{1-r}\right)^{\frac{1}{p}}\right), \quad \text{as } r \to 1.
\]
Using this with $p = 1$, and Lemma A with $p = 1$ and $r = 1 - (1/N)$, we obtain

$$|f(0)| \left(1 - \frac{1}{N}\right)^N \prod_{n=1}^{N} \frac{1}{|z_n|} \leq C (\log N)^{\frac{1}{2}}.$$

This gives (1·4) and completes the proof of Theorem 2.

Girela proved in [6, theorem 1] that, for $f \in B_1$ and $0 < p < \infty$,

$$M_p(r, f) = o\left(\left(\log \frac{1}{1-r}\right)^{\frac{1}{2}}\right), \quad \text{as } r \to 1.$$

Using this with $p = 1$, and Lemma A with $p = 1$ and $r = 1 - (1/N)$, we obtain

$$|f(0)| \left(1 - \frac{1}{N}\right)^N \prod_{n=1}^{N} \frac{1}{|z_n|} = o((\log N)^{\frac{1}{2}}),$$

which implies (1·7) and Theorem 4 is proved.

Proof of Theorem 3. The reasoning we are going to apply in our proof of Theorem 3 is related to that used by Horowitz in [9, p. 330].

Let

$$f(z) = \prod_{k=1}^{\infty} F_k(z), \quad z \in \Delta, \quad (2·4)$$

where,

$$F_k(z) = \frac{1 + e^{\frac{i}{k} z^{2k}}}{1 + e^{-\frac{i}{k} z^{2k}}}, \quad z \in \Delta, \quad k = 1, 2, \ldots. \quad (2·5)$$

It is clear that the product in (2·4) converges uniformly on every compact subset of Δ and so, it defines a function f which is analytic in Δ and the set of its zeros is the union of the zero sets of the F_ks. Hence, for every $k = 1, 2, \ldots$, the function f has exactly 2^k zeros on the circle $\{|z| = e^{-\frac{1}{k}}\}$. If $N_n = 2^{1} + 2^{2} + \cdots + 2^{n}$, then

$$\prod_{k=1}^{N_n} \frac{1}{|z_k|} = \prod_{k=1}^{n} e^{1/k} = e^{1 + \frac{1}{2} + \cdots + \frac{1}{n}} = e^{\log n + O[1]} \geq Cn. \quad (2·6)$$

Since $2^n \leq N_n \leq 2^{n+1}$, we have $\log N_n \sim n$. Therefore (2·6) implies

$$\prod_{n=1}^{N} \frac{1}{|z_n|} = o(\log N).$$

Hence, f satisfies (1·5).

Now we turn to prove that $f \in A^0$. Set

$$r_n = e^{-\frac{1}{n}}, \quad n = 1, 2, \ldots. \quad (2·7)$$

We have

$$|f(z)| = \prod_{k=1}^{n} \frac{e^{\frac{i}{k} z^{2k}} + z^{2k}}{1 + e^{-\frac{i}{k} z^{2k}}} \prod_{j=1}^{\infty} \frac{1 + e^{\frac{i}{j} z^{2j}}}{1 + e^{-\frac{i}{j} z^{2j}}}. \quad (2·8)$$
On the zeros of Bloch functions

Using the inequality \(|(a + b)/(1 + ab)| \leq (|a| + |b|)/(1 + |ab|) < 1, \ (|a|, |b| < 1)|, we get

\[
\left| \frac{e^{-\frac{1}{2}z^2} + z^2}{1 + e^{-\frac{1}{2}z^2}} \right| < 1, \quad z \in \Delta, \quad k = 1, 2, \ldots
\]

and

\[
\left| \frac{1 + e^{\frac{1}{2n}z^{2^{2n-j}}}}{1 + e^{-\frac{1}{2n}z^{2^{2n-j}}}} \right| = e^{\frac{1}{2n}} \left| \frac{e^{-\frac{1}{2n}z^{2^{2n-j}}} + z^{2^{2n-j}}}{1 + e^{-\frac{1}{2n}z^{2^{2n-j}}}} \right| \leq e^{\frac{1}{2n}} \left| \frac{e^{-\frac{1}{2n}z^{2^{2n-j}}} + (1/e)^{2^j}}{1 + e^{\frac{1}{2n}(1/e)^{2^j}}} \right| \leq \frac{1 + e^{\frac{1}{2n}(1/e)^{2^j}}}{1 + e^{-\frac{1}{2n}(1/e)^{2^j}}}, \quad |z| = r_n, \quad j \geq 1, \quad n \geq 1. \tag{2.10}
\]

Using (2.10) and the fact that \(x \mapsto (1 + x\alpha)/(1 + x^{-1}\alpha)\) is increasing in \((0, 1]\), for a constant \(\alpha > 0\), we deduce that

\[
\prod_{j=1}^{\infty} \left| \frac{1 + e^{\frac{1}{2n}z^{2^{2n-j}}}}{1 + e^{-\frac{1}{2n}z^{2^{2n-j}}}} \right| \leq \prod_{j=1}^{\infty} \left| \frac{1 + e^{\frac{1}{2n}(1/e)^{2^j}}}{1 + e^{-\frac{1}{2n}(1/e)^{2^j}}} \right| \leq \prod_{j=1}^{\infty} \frac{1 + e^{(1/e)^{2^j}}}{1 + e^{-1(1/e)^{2^j}}} = A, \quad |z| = r_n, \quad n \geq 1, \tag{2.11}
\]

where \(A\) is independent of \(n\).

Using (2.8), (2.9) and (2.11), we see that

\[
|f(z)| \leq A \prod_{k=1}^{n} e^{1/k} = Ae^{1/2 + \cdots + 1/k} = Ae^{\log n + O(1)} \leq Cn, \quad |z| = r_n, \quad n \geq 1. \tag{2.12}
\]

Notice that for \(|z| = r_n\)

\[
2^{2n} = \frac{1}{\log (1/|z|)} \leq \frac{1}{1 - |z|}
\]

and then (2.12) gives

\[
|f(z)| \leq C \log \frac{1}{\log (1/|z|)} \leq C \log \frac{1}{1 - |z|}, \quad |z| = r_n, \quad n \geq 1. \tag{2.13}
\]

Now, if \(r_n \leq |z| \leq r_{n+1}\) and \(n\) is sufficiently large we deduce, using (2.13), that

\[
|f(z)| \leq M_\infty(r_{n+1}, f) \leq C \log \frac{1}{\log (1/r_{n+1})} = C \log (2^{n+1}) = Cn \leq C \log \frac{1}{1 - r_n} \leq C \log \frac{1}{1 - |z|}.
\]

Hence, \(f \in A^0\). This finishes the proof.
Before embarking into the proof of Theorem 5, we recall some notation and facts from Nevanlinna theory (see [7, 11 or 14]). For simplicity, we shall restrict ourselves to analytic functions in Δ.

Let f be a function analytic and not constant in Δ. For any $a \in \mathbb{C}$ and $0 \leq r < 1$, we denote by $n(r,a,f)$ the number of zeros of $f - a$ in the disc $\{|z| \leq r\}$, where each zero is counted according to its multiplicity. We define also

$$N(r,a,f) = \int_0^r \frac{n(t,a,f) - n(0,a,f)}{t} \, dt + n(0,a,f) \log r, \quad 0 < r < 1. \quad (3\cdot1)$$

For simplicity, we shall write

$$n(r,f) = n(r,0,f), \quad N(r,f) = N(r,0,f).$$

The Nevanlinna characteristic function $T(r,f)$ is defined by

$$T(r,f) = \frac{1}{2\pi} \int_{-\pi}^\pi \log^+ |f(re^{i\theta})| \, d\theta, \quad 0 < r < 1. \quad (3\cdot2)$$

The proximity function $m(r,a,f)$ is given by

$$m(r,a,f) = \frac{1}{2\pi} \int_{-\pi}^\pi \log^+ \frac{1}{|f(re^{i\theta}) - a|} \, d\theta, \quad 0 < r < 1. \quad (3\cdot3)$$

In this setting the first fundamental theorem can be stated as follows:

First Fundamental Theorem of Nevanlinna. Let f be an analytic and not constant function in the unit disc Δ. Then

$$m(r,a,f) + N(r,a,f) = T(r,f) + O(1), \quad \text{as} \quad r \to 1, \quad (3\cdot4)$$

for every $a \in \mathbb{C}$.

If $f \in \mathcal{B}$ (actually, even if simply $f \in A^0$), then clearly

$$T(r,f) = O\left(\log \log \frac{1}{1-r}\right), \quad \text{as} \quad r \to 1,$$

and using (3-4), we deduce that

$$N(r,a,f) = O\left(\log \log \frac{1}{1-r}\right), \quad \text{as} \quad r \to 1, \quad \text{for all} \quad a \in \mathbb{C}, \quad (3\cdot5)$$

which implies (see [1, p. 22])

$$n(r,a,f) = O\left(\frac{1}{1-r} \log \log \frac{1}{1-r}\right), \quad \text{as} \quad r \to 1, \quad \text{for all} \quad a \in \mathbb{C}. \quad (3\cdot6)$$

Now, we can proceed to prove our results.

Proof of Theorem 5. Let $f \in A^0$ and let $\{z_k\}_{k=1}^\infty$ be the sequence of ordered zeros of f. Let us assume, without loss of generality, that

$$1 - \frac{1}{e} < |z_k|, \quad \text{for all} \quad k.$$
Using Theorem 2, we deduce that

\[
\sum_{k=1}^{N} \log \frac{1}{|z_k|} \leq \log \log N + O(1), \tag{3-7}
\]

Now \((1 - |z_k|) \leq \log(1/|z_k|)\) and then (3-7) implies

\[
\sum_{k=1}^{N} (1 - |z_k|) \leq \log \log N + O(1). \tag{3-8}
\]

Since \(|z_k|\) is increasing, (3-8) implies

\[N(1 - |z_N|) \leq \log \log N + O(1)\]

and hence

\[
\frac{N}{\log \log N} \leq \frac{2}{(1 - |z_N|)}, \quad \text{if } N \geq N_0, \tag{3-9}
\]

for a certain \(N_0 > 1\). Using (3-9) and adding by parts, we obtain

\[
\sum_{k=N_0}^{N} (1 - |z_k|) \left(\log \log \frac{1}{1 - |z_k|} \right)^{-\alpha} \leq C \sum_{k=N_0}^{N} (1 - |z_k|) (\log \log k)^{-\alpha}
\]

\[
= \sum_{k=N_0}^{N-1} \left(\sum_{j=N_0}^{k} (1 - |z_j|) \right) [(\log \log k)^{-\alpha} - (\log \log (k+1))^{-\alpha}]
\]

\[
+ \sum_{j=N_0}^{N} (1 - |z_j|) (\log \log N)^{-\alpha}
\]

\[
= I + II.
\]

Now, using (3-8) and having in mind that \(\alpha > 1\), we obtain

\[I \leq \sum_{k=N_0}^{N-1} \frac{\log \log k}{k \log k (\log \log k)^{-\alpha}} = O(1)\]

and

\[II = O((\log \log N)^{1-\alpha}) = O(1)\]

Hence, we obtain (1-8). This finishes the proof.

Proof of Theorem 6. Set

\[
g(z) = \sum_{n=1}^{\infty} \frac{1}{1 + \log n} z^n, \quad z \in \Delta. \tag{3-10}
\]

Since \(g\) is given by a power series with Hadamard gaps whose coefficients tend to zero, it follows that \(g \in \B_0\). Set

\[r_n = 1 - 2^{-n}, \quad n = 1, 2, 3, \ldots \tag{3-11}\]
We have, for all sufficiently large n,

$$M_2(r_n, g)^2 = \sum_{k=1}^{\infty} \frac{1}{(1 + \log k)^2 \frac{r_n}{n}} \left(1 + \log \left(1 + \log k\right) + \frac{1}{2^n}\right)^{2n+1} \geq n \sum_{k=1}^{n} \frac{1}{(1 + \log k)^2 \frac{r_n}{n}} \left(1 + \frac{1}{2^n}\right)^{2n+1} \geq C \frac{n}{(\log n)^2}. \quad (3.12)$$

Now, since $\log \left(\frac{1}{1 - r_n}\right) = n \log 2$, (3.12) shows that

$$M_2(r_n, g)^2 \geq C \log \left(\frac{1}{1 - r_n}\right)^{-2} \left(\log \log \left(\frac{1}{1 - r_n}\right)\right)^{-2}, \quad \text{if } n \text{ is sufficiently large.} \quad (3.13)$$

From this we can deduce easily that

$$M_2(r, g)^2 \geq C \log \left(\frac{1}{1 - r}\right)^{-2} \left(\log \log \left(\frac{1}{1 - r}\right)\right)^{-2}, \quad \text{if } r \text{ is sufficiently close to 1.} \quad (3.14)$$

Since g is given by a power series with Hadamard gaps, using theorem 8.25 in chapter V of [16, vol. I], we see that there exist two absolute constants $\lambda > 0$ and $\mu > 0$ such that for every $r \in (0, 1)$ the set

$$E_r = \{\theta \in [0, 2\pi]: |g(re^{i\theta})| > \lambda M_2(r, g)\}$$

has measure not less than μ. This and (3.14) imply

$$T(r, g) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \log^+ |g(re^{i\theta})| \, d\theta \geq \frac{1}{2\pi} \int_{E_r} \log^+ \left[C \left(\log \left(\frac{1}{1 - r}\right)\right)^{\frac{1}{2}} \left(\log \log \left(\frac{1}{1 - r}\right)\right)^{-1}\right] \, d\theta \geq \frac{\mu}{2\pi} \left[C + \frac{1}{2} \log \log \left(\frac{1}{1 - r}\right) - \log \log \left(\frac{1}{1 - r}\right)\right],$$

for all r sufficiently close to 1. Hence if we take $\alpha, 0 < \alpha < \mu/4\pi$, we have

$$T(r, g) \geq \alpha \log \log \left(\frac{1}{1 - r}\right), \quad r_0 < r < 1, \quad (3.15)$$

for a certain $r_0 \in (0, 1)$.

Using (3.4), we see that for every $a \in \mathbb{C}$, (3.15) remains true with $T(r, f)$ replaced either by $m(r, a, f)$ or $N(r, a, f)$. This is not enough for our purposes. Applying some more refined results of Nevanlinna Theory (cf. the theorem on p. 276 of [11]) we see that (3.15) implies the existence of complex numbers a such that $g(0) \neq a$ and

$$N(r, a, g) \geq \beta \log \log \left(\frac{1}{1 - r}\right), \quad r_0 < r < 1, \quad (3.16)$$

for some $\beta > 0$ and some $r_0 \in (0, 1)$. Take such an a and set

$$f(z) = g(z) - a, \quad z \in \Delta. \quad (3.17)$$
On the zeros of Bloch functions

We have \(f \in \mathcal{B}_0 \), \(f(0) \neq 0 \), and (3.16) can be written as

\[
N(r, f) \geq \beta \log \log \frac{1}{1 - r}, \quad r_0 < r < 1.
\] \tag{3.18}

Let \(\{z_n\} \) be the sequence of zeros of \(f \). We shall prove that the conclusion of Theorem 6 holds for this function \(f \). For simplicity, set \(n(r, f) = n(r) \) and \(N(r, f) = N(r) \). We have, integrating by parts and using (3-6),

\[
\sum_{|z_n| > 1 - \frac{1}{4}} (1 - |z_n|) \left(\log \log \frac{1}{1 - |z_n|} \right)^{-1} \geq \int_{r_0}^1 \frac{1 - r}{(\log \log (1/1 - r)) \log (1/1 - r)} dn(r) + O(1)
\]

\[
= \int_{r_0}^1 r \left(\log \log \frac{1}{1 - r} \right)^{-1} \left(1 + \left(\log \log \frac{1}{1 - r} \right)^{-1} \left(\log \frac{1}{1 - r} \right)^{-1} \right) n(r) \frac{dr}{r} + O(1)
\]

\[
\geq \int_{r_0}^1 r \left(\log \log \frac{1}{1 - r} \right)^{-1} n(r) \frac{dr}{r} + O(1).
\] \tag{3.19}

Having in mind (3.5), another integration by parts gives

\[
\int_{r_0}^1 r \left(\log \log \frac{1}{1 - r} \right)^{-1} \frac{n(r)}{r} dr = \int_{r_0}^1 \left(- \left(\log \log \frac{1}{1 - r} \right)^{-1} \right.

\[
+ \frac{r}{1 - r} \left(\log \log \frac{1}{1 - r} \right)^{-2} \left(\log \frac{1}{1 - r} \right)^{-1} \big) N(r) dr + O(1). \] \tag{3.20}

Using (3.16), (3.19) and (3.20) we obtain

\[
\sum_{|z_n| > 1 - \frac{1}{4}} (1 - |z_n|) \left(\log \log \frac{1}{1 - |z_n|} \right)^{-1}
\]

\[
\geq C \int_{r_0}^1 \frac{r}{1 - r} \left(\left(\log \log \frac{1}{1 - r} \right)^{-1} \left(\log \frac{1}{1 - r} \right)^{-1} \big) dr + O(1)
\]

\[
= \infty.
\]

This finishes the proof of Theorem 6.

Remark. The existence of a function \(f \in \mathcal{B} \) satisfying (3.18) follows from the work of Offord \cite{12} in which probabilistic arguments were used (see also \cite{1}, p. 20). Our function belongs to \(\mathcal{B}_0 \) and, furthermore, its construction is much simpler.

REFERENCES

