Weighted modular inequalities for Hardy–Steklov operators

Pedro Ortega Salvador ∗, Consuelo Ramírez Torreblanca

Análisis Matemático, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain

Received 27 June 2005
Available online 26 October 2005
Submitted by L. Chen

Abstract

We characterize weighted modular inequalities of weak and strong type for the Hardy–Steklov operators \(T \) defined by
\[
Tf(x) = g(x) \int_{s(x)}^{h(x)} f(t) \, dt,
\]
where \(g \) is a positive function and \(s, h \) are increasing and continuous functions such that \(s(x) \leq h(x) \) for all \(x \).

© 2005 Elsevier Inc. All rights reserved.

Keywords: Weights; Modular inequalities; Hardy operators; Hardy–Steklov operators

1. Introduction and results

Let \(-\infty < a < b < \infty \) and let \(s, h : (a, b) \to \mathbb{R} \) be increasing and continuous functions such that \(s(x) \leq h(x) \) for all \(x \in (a, b) \). Let \(g \) be a positive function defined on \((a, b)\). Let \(T \) be the Hardy–Steklov operator defined by
\[
Tf(x) = g(x) \int_{s(x)}^{h(x)} f(t) \, dt.
\]

This research has been supported in part by MICYT, BFM 2001-1638, and Junta de Andalucía.

E-mail addresses: ortega@anamat.cie.uma.es (P. Ortega Salvador), ramirez@anamat.cie.uma.es (C. Ramírez Torreblanca).
Particular cases are the Hardy operator \(Tf(x) = \int_0^x f \), the Hardy averaging operators \(Tf(x) = x^\alpha \int_0^x f \), the moving averaging operators \(Tf(x) = \frac{1}{h(x)-s(x)} \int_{s(x)}^{h(x)} f \) and the Steklov operator \(Tf(x) = \int_{s(x)}^{s(x)+1} f \).

Hardy–Steklov operators arise naturally in the theory of delay differential equations and the knowledge of their behaviour may be useful in the study of some Cauchy problems (see [7]).

The weighted strong and weak type \((p,q)\) inequalities for \(T \) have been characterized in [1, 3–5].

In this paper we will characterize weighted modular inequalities of strong and weak type for \(T \), i.e., inequalities of the forms

\[
\Phi_2^{-1} \left(\int_a^b \Phi_2(Tf(x)) u(x) \, dx \right) \leq \Phi_1^{-1} \left(\int_{s(a)}^{h(b)} \Phi_1(Cf(x)) v(x) \, dx \right)
\]

and

\[
\Phi_2^{-1} \left(\Phi_2(\lambda) \int_{\{x \in (a,b): Tf(x) > \lambda\}} u \right) \leq \Phi_1^{-1} \left(\int_{s(a)}^{h(b)} \Phi_1(Cf) v \right),
\]

where \(\Phi_1\) and \(\Phi_2\) are positive, strictly increasing functions defined on \([0, \infty)\) and \(u, v \) are non-negative functions defined on \((a, b)\) and \((s(a), h(b))\), respectively.

The weighted modular inequalities for operators like maximal functions, singular integral, etc., have been extensively studied (see [6] and the references therein). In particular, the weighted modular inequalities for the Hardy operator and the generalized Hardy operators were characterized in [2,8–10].

In the statements and proofs of the results we will need some concepts and properties related to \(N\)-functions. By an \(N\)-function we mean a continuous and convex function \(\Phi\) defined on \([0, \infty)\) such that \(\Phi(s) > 0\) if \(s > 0\), \(\Phi(s)/s \to 0\) when \(s \to 0\) and \(\Phi(s)/s \to \infty\) when \(s \to \infty\). Every \(N\)-function \(\Phi\) admits a representation of the form \(\Phi(x) = \int_0^x \varphi(t) \, dt\), where \(\varphi\) is increasing, continuous by the right at every point and verifies \(\varphi(0) = 0\), \(\varphi(s) > 0\) if \(s > 0\) and \(\varphi(s) \to \infty\) when \(s \to \infty\). The function \(\varphi\) is called the density function of \(\Phi\). Given an \(N\)-function \(\Phi\), the function \(\Psi : [0, \infty) \to \mathbb{R}\) defined by \(\Psi(t) = \sup_{s \geq 0} (st - \Phi(s))\) is also an \(N\)-function called the complementary function of \(\Phi\). Two complementary \(N\)-functions \(\Phi\) and \(\Psi\) verify Young’s inequality: if \(s, t \geq 0\), then \(st \leq \Phi(s) + \Psi(t)\).

Our results are the following ones:

Theorem 1. Let \(\Phi_1\) be an \(N\)-function and let \(\Phi_2 : [0, \infty) \to \mathbb{R}\) be a positive strictly increasing continuous function such that \(\Phi_2(0) = 0\) and \(\lim_{t \to \infty} \Phi_2(t) = \infty\). Let us suppose that \(\Phi_1 \circ \Phi_2^{-1}\) is subadditive. Let \(\Psi_1\) be the complementary \(N\)-function of \(\Phi_1\). Let \(u\) and \(v\) be non-negative functions defined on \((a, b)\) and \((s(a), h(b))\), respectively. The following statements are equivalent:

(i) There exists \(C > 0\) such that inequality (1.1) holds for all positive functions \(f \).

(ii) There exists \(C > 0\) such that the inequality

\[
\Phi_2^{-1} \left(\int_{\{x \in (a,b): \int_{s(x)}^{h(x)} f > \lambda\}} \Phi_2(\lambda g) u \right) \leq \Phi_1^{-1} \left(\int_{s(a)}^{h(b)} \Phi_1(Cf(x)) v(x) \, dx \right)
\]

(1.3)
holds for all \(\lambda > 0 \) and all positive functions \(f \).

(iii) There exists \(C > 0 \) such that
\[
\begin{aligned}
\int_{s(y)}^{h(x)} \Psi_1 \left(\frac{\alpha(\lambda, x, y)}{C\lambda v} \right) v \leq \alpha(\lambda, x, y) < \infty
\end{aligned}
\]
holds for all \(\lambda > 0 \) and all \(x, y \in (a, b) \) with \(x < y \) and \(s(y) \leq h(x) \), where
\[
\alpha(\lambda, x, y) = \Phi_1 \circ \Phi_2^{-1} \left(\int_x^y \Phi_2(\lambda g) u \right).
\]

Theorem 2. Let \(\Phi_1, \Phi_2, \Psi_1, u \) and \(v \) be as in Theorem 1. Let us suppose that \(g \) is monotone. The following statements are equivalent:

(i) There exists \(C > 0 \) such that inequality (1.2) holds for all \(\lambda > 0 \) and all positive functions \(f \).

(ii) There exists \(C > 0 \) such that
\[
\begin{aligned}
\int_{s(y)}^{h(x)} \Psi_1 \left(\frac{(\inf_{(x,y)} g) \beta(\lambda, x, y)}{C\lambda v} \right) v \leq \beta(\lambda, x, y) < \infty
\end{aligned}
\]
holds for all \(\lambda > 0 \) and all \(x, y \in (a, b) \) with \(x < y \) and \(s(y) \leq h(x) \), where
\[
\beta(\lambda, x, y) = \left(\Phi_1 \circ \Phi_2^{-1} \right) \left(\int_x^y \Phi_2(\lambda) u \right).
\]

Observe that Theorems 1 and 2 include as particular cases the weighted strong and weak type \((p, q)\) inequalities for \(1 < p \leq q < \infty \). Observe also that if \(g \equiv 1 \), then the strong type inequality (1.1) and the weak type inequality (1.2) are equivalent. However, for general monotone \(g \), (1.1) and (1.2) are not equivalent, even if \(\Phi_1(t) = t^p \) and \(\Phi_2(t) = t^q \), \(1 < p \leq q < \infty \).

In order to prove the theorems, we will need the following lemma, whose proof can be found in [1]:

Lemma 1. Let \(\{ (a_j, b_j) \} \) be the connected components of the open set \(\Omega = \{ x \in (a, b) : s(x) < h(x) \} \). Then

(a) \((s(a_j), h(b_j)) \cap (s(a_i), h(b_i)) = \emptyset \) for all \(j \neq i \).

(b) For every \(j \) there exists a (finite or infinite) sequence \(\{ m^j_k \} \) of real numbers such that:

(i) \(a_j \leq m^j_k < m^j_{k+1} < b_j \) for all \(k \) and \(j \);

(ii) \((a_j, b_j) = \bigcup_k (m^j_k, m^j_{k+1}) \) a.e. for all \(j \);

(iii) \(s(m^j_{k+1}) \leq h(m^j_k) \) for all \(j \) and \(k \) and \(s(m^j_{k+1}) = h(m^j_k) \) if \(a_j < m^j_k < m^j_{k+1} < b_j \).

The proof of Theorem 1 is included in Section 2 and the proof of Theorem 2 can be found in Section 3.
2. Proof of Theorem 1

The proof of (i) \Rightarrow (ii) is trivial.

(ii) \Rightarrow (iii). Let $\lambda > 0$, $n \in \mathbb{N}$ and $x, y \in (a, b)$ with $x < y$ and $s(y) \leq h(x)$. If $s(y) = h(x)$, there is nothing to prove. Suppose that $s(y) < h(x)$. Since the function $\Psi_1(t)/t$ increases taking all values from 0 to ∞, there exists $\varepsilon > 0$ such that

$$\int_{s(y)}^{h(x)} \Psi_1\left(\frac{\varepsilon}{v + 1/n}\right) \frac{v + 1/n}{\varepsilon} = 2C\lambda, \quad (2.1)$$

where C is the constant of inequality (1.3).

Let f be the function defined by

$$f = \frac{1}{C} \Psi_1\left(\frac{\varepsilon}{v + 1/n}\right) \frac{v + 1/n}{\varepsilon} \chi_{(s(y), h(x))}.$$

If $z \in (x, y)$, we have

$$\int_{s(z)}^{h(z)} \int_{s(y)}^{h(x)} f = \int_{s(y)}^{h(x)} \frac{1}{C} \Psi_1\left(\frac{\varepsilon}{v + 1/n}\right) \frac{v + 1/n}{\varepsilon} = 2\lambda > \lambda.$$

This shows that $(x, y) \subset \{z \in (a, b): \int_{s(z)}^{h(z)} f > \lambda\}$. Then (ii), the inequality $\Phi_1(\frac{\Psi_1(t)}{t}) \leq \Psi_1(t)$ and (2.1) give

$$\alpha(\lambda, x, y) = \Phi_1 \circ \Phi_2^{-1}\left(\int_x^y \Phi_2(\lambda g)u\right)$$

$$\leq \Phi_1 \circ \Phi_2^{-1}\left(\int_{\{z \in (a, b): \int_{s(z)}^{h(z)} f > \lambda\}} \Phi_2(\lambda g)u\right)$$

$$\leq \int_{s(a)}^{h(b)} \Phi_1(C f(t)) \left(v(t) + \frac{1}{n}\right) dt$$

$$= \int_{s(y)}^{h(x)} \Phi_1\left(\Psi_1\left(\frac{\varepsilon}{v + 1/n}\right) \frac{v + 1/n}{\varepsilon}\right) \left(v + \frac{1}{n}\right)$$

$$\leq \int_{s(y)}^{h(x)} \Psi_1\left(\frac{\varepsilon}{v + 1/n}\right) \left(v + \frac{1}{n}\right) = 2C\lambda \varepsilon. \quad (2.2)$$

This inequality ensures $\alpha(\lambda, x, y) < \infty$.

If ψ_1 is the density function of Ψ_1, it is known that

$$\psi_1(x) \leq x \psi_1(x) \leq \Psi_1(2x). \quad (2.3)$$

On one hand, by (2.2), the right-hand side inequality in (2.3) and (2.1), we have
\[J = \int_{s(y)}^{h(x)} \psi_1 \left(\frac{\alpha(\lambda, x, y)}{4C\lambda(v + 1/n)} \right) \leq \int_{s(y)}^{h(x)} \psi_1 \left(\frac{\varepsilon}{2(v + 1/n)} \right) \]

\[\leq 2 \int_{s(y)}^{h(x)} \psi_1 \left(\frac{\varepsilon}{v + 1/n} \right) \frac{v + 1/n}{\varepsilon} = 4C\lambda. \] (2.4)

On the other hand, the left-hand side inequality in (2.3) yields

\[J \geq \int_{s(y)}^{h(x)} \psi_1 \left(\frac{\alpha(\lambda, x, y)}{4C\lambda(v + 1/n)} \right) \frac{4C\lambda(v + 1/n)}{\alpha(\lambda, x, y)} \]

\[= \frac{4C\lambda}{\alpha(\lambda, x, y)} \int_{s(y)}^{h(x)} \psi_1 \left(\frac{\alpha(\lambda, x, y)}{4C\lambda(v + 1/n)} \right) \left(v + \frac{1}{n} \right). \] (2.5)

Putting together (2.4) and (2.5), we obtain

\[\frac{4C\lambda}{\alpha(\lambda, x, y)} \int_{s(y)}^{h(x)} \psi_1 \left(\frac{\alpha(\lambda, x, y)}{4C\lambda(v + 1/n)} \right) \left(v + \frac{1}{n} \right) \leq J \leq 4C\lambda. \]

Letting \(n \to \infty \) and applying the monotone convergence theorem, we get

\[\int_{s(y)}^{h(x)} \psi_1 \left(\frac{\alpha(\lambda, x, y)}{4C\lambda v} \right) v \leq \alpha(\lambda, x, y). \]

(iii) \(\Rightarrow \) (i). If \(s(x) = h(x) \) for all \(x \in (a, b) \), there is nothing to prove.

Let us suppose that there exists \(z \in (a, b) \) such that \(s(z) < h(z) \). Then \(\Omega = \{ x \in (a, b): s(x) < h(x) \} \) is a nonempty open set. Let \(\{(a_j, b_j)\}_j \) be the collection of the connected components of \(\Omega \) and, for every \(j \), let \(\{m^j_k\} \) be the sequence given by Lemma 1.

For fixed \(j, k \) and \(x \in (m^j_k, m^j_{k+1}) \) we have

\[Tf(x) = g(x) \int_{s(x)}^{h(x)} f + g(x) \int_{s(m^j_{k+1})}^{h(m^j_k)} f + g(x) \int_{s(m^j_{k+1})}^{h(m^j_k)} f. \]

Then

\[\int_a^b \Phi_2(Tf)u = \sum_{j,k} \int_{m^j_k}^{m^j_{k+1}} \Phi_2 \left(g(x) \int_{s(x)}^{h(x)} f + g(x) \int_{s(m^j_{k+1})}^{h(m^j_k)} f \right) u(x) \, dx \]

\[\leq \sum_{j,k} \int_{m^j_k}^{m^j_{k+1}} \Phi_2 \left(g(x) \int_{s(x)}^{3f} u(x) \, dx \right) \]
\[+ \sum_{j,k}^{m_{j+1}^k} \int_{m_{k}^j}^{h(m_{k}^j)} \Phi_2 \left(g(x) \int_{s(m_{k+1}^j)}^{3f} u(x) \, dx \right) \]
\[+ \sum_{j,k}^{m_{j+1}^k} \int_{h(m_{k}^j)}^{h(x)} \Phi_2 \left(g(x) \int_{h(m_{k}^j)}^{3f} u(x) \, dx \right) = (I) + (II) + (III). \]

Let us estimate (III). Let us fix \(j, k \) and consider the sequence \(\{x_n\} \) defined by \(x_0 = m_{j+1}^k + 1 \) and \(\int_{h(x_n)}^{h(x_{n+1})} f = \int_{h(x_n)}^{h(x_{n+1})} f \). This sequence verifies
\[\int_{h(x_{n+2})}^{h(x_{n+1})} f = \frac{1}{4} \int_{h(m_{k}^j)}^{h(x_n)} f. \]

Let, for every \(n \in \mathbb{N} \), \(f_n = f \chi_{(h(x_{n+2}), h(x_{n+1}))} \). If \(x \in (x_{n+1}, x_n) \) then, by the definition of the sequence \(\{x_n\} \), we have
\[\int_{h(m_{k}^j)}^{h(x)} 4f_n \geq \int_{h(m_{k}^j)}^{h(x)} 4f_n = \int_{h(m_{k}^j)}^{h(x)} f = \int_{h(m_{k}^j)}^{h(x)} f. \]

This shows that
\[(x_{n+1}, x_n) \subset E_n = \left\{ x \in (m_{k}^j, m_{k+1}^j) : \int_{h(m_{k}^j)}^{h(x)} 12f_n > \lambda_n \right\}, \quad (2.6) \]

where \(\lambda_n = \int_{h(m_{k}^j)}^{h(x_n)} 3f \).

By the monotonicity of \(\int_{h(m_{k}^j)}^{h(x)} 12f_n \), it is clear that \(E_n \) is an interval of the form \((\gamma, m_{k+1}^j) \).

Let \(x \in E_n \). Then,
\[\lambda_n < \int_{h(m_{k}^j)}^{h(x)} 12f_n = \int_{h(m_{k}^j)}^{h(x)} \frac{\alpha(\lambda_n, x, m_{k+1}^j)}{Cv \alpha(\lambda_n, x, m_{k+1}^j)} v \]
\[\text{or, equivalently,} \]
\[2\alpha(\lambda_n, x, m_{k+1}^j) \leq \int_{h(m_{k}^j)}^{h(x)} 24Cf_n \frac{\alpha(\lambda_n, x, m_{k+1}^j)}{\lambda_n Cv} v. \]

Applying Young’s inequality and (iii), we obtain
\[2\alpha(\lambda_n, x, m_{k+1}^j) \leq \int_{h(m_{k}^j)}^{h(x)} \Phi_1(24Cf_n)v + \int_{h(m_{k}^j)}^{h(x)} \Psi_1 \left(\frac{\alpha(\lambda_n, x, m_{k+1}^j)}{\lambda_n Cv} \right) v \]

\[\leq \int_{h(m^j_k)} h(x) \Phi_1(24Cf_n)v + \alpha(\lambda_n, x, m^j_{k+1}), \]

which gives

\[\alpha(\lambda_n, x, m^j_{k+1}) \leq \int_{h(m^j_k)} h(x) \Phi_1(24Cf_n)v. \]

Since the above inequality holds for all \(x \in E_n \), taking infimum we get

\[\int_{E_n} \Phi_2(\lambda_n g)u \leq \Phi_2 \circ \Phi_1^{-1} \left(\int_{h(m^j_k)} \Phi_1(24Cf_n)v \right). \] (2.7)

By (2.6), (2.7), the definition of \(f_n \) and the subadditivity of \(\Phi_1 \circ \Phi_2^{-1} \), we conclude

\[
(III) = \sum_{j,k} \int_{m^j_k}^{m^j_{k+1}} \int_{h(m^j_k)}^{h(x)} \Phi_2 \left(g(x) \int_{h(m^j_k)}^{h(x)} 3f \right) u(x) dx
\]

\[
= \sum_{j,k} \sum_{n} x_n \int_{m^j_k}^{m^j_{k+1}} \Phi_2 \left(g(x) \int_{h(m^j_k)}^{h(x)} 3f \right) u(x) dx
\]

\[
\leq \sum_{j,k} \sum_{n} x_n \int_{m^j_k}^{m^j_{k+1}} \Phi_2 \left(g(x) \lambda_n \right) u(x) dx
\]

\[
\leq \sum_{j,k} \sum_{n} \left(\Phi_2 \circ \Phi_1^{-1} \right) \left(\int_{h(m^j_k)}^{h(m^j_{k+1})} \Phi_1(24Cf_n)v \right)
\]

\[
= \sum_{j,k} \sum_{n} \left(\Phi_2 \circ \Phi_1^{-1} \right) \left(\int_{h(x_{n+1})}^{h(x_{n+1}+1)} \Phi_1(24Cf)v \right)
\]

\[
\leq \sum_{j,k} \left(\Phi_2 \circ \Phi_1^{-1} \right) \left(\int_{h(m^j_k)}^{h(m^j_{k+1})} \Phi_1(24Cf)v \right). \]
The estimation of (I) can be done in a similar way obtaining

\[
(I) \leq \sum_{j,k} \left(\Phi_2 \circ \Phi_1^{-1} \left(\int_{s(m^j_k)} H_{(m^j_{k+1})} \Phi_1(24Cf) v \right) \right).
\]

In order to estimate (II), let \(\lambda_{j,k} = \int_{h(m^j_k)}^{h(m^j_{k+1})} 3f \). By Young’s inequality and (iii) we have

\[
2\alpha(\lambda_{j,k}, m^j_k, m^j_{k+1}) = \int_{s(m^j_{k+1})}^{h(m^j_k)} 6 Cf \frac{\alpha(\lambda_{j,k}, m^j_k, m^j_{k+1})}{C \lambda_{j,k} v} \leq \int_{s(m^j_{k+1})}^{h(m^j_k)} \Phi_1(6 Cf) v + \int_{s(m^j_{k+1})}^{h(m^j_k)} \Psi_1 \left(\frac{\alpha(\lambda_{j,k}, m^j_k, m^j_{k+1})}{C \lambda_{j,k} v} \right) v.
\]

Therefore

\[
\alpha(\lambda_{j,k}, m^j_k, m^j_{k+1}) \leq \int_{s(m^j_{k+1})}^{h(m^j_k)} \Phi_1(6 Cf) v,
\]

and this implies

\[
(II) = \sum_{j,k} \int_{m^j_k}^{m^j_{k+1}} \Phi_2 \left(g \int_{s(m^j_{k+1})}^{h(m^j_k)} 3f \right) u \leq \sum_{j,k} \left(\Phi_2 \circ \Phi_1^{-1} \left(\int_{s(m^j_{k+1})}^{h(m^j_k)} \Phi_1(6 Cf) v \right) \right).
\]

Putting together the estimations of (I)–(III), summing up in \(j \) and \(k \) and applying the subadditivity of \(\Phi_1 \circ \Phi_2^{-1} \), we get (i).

3. Proof of Theorem 2

(i) \(\Rightarrow \) (ii). Let \(\lambda > 0 \) and let \(x, y \in (a, b) \) with \(x < y \) and \(s(y) \leq h(x) \). If \(s(y) = h(x) \), there is nothing to prove. Let us suppose \(s(y) < h(x) \). Let \(\rho \) be a positive number and \(n \in \mathbb{N} \). There exists \(\varepsilon > 0 \) such that

\[
\int_{s(y)}^{h(x)} \Psi_1 \left(\frac{\varepsilon (\inf_{(x,y)} g)}{v + 1/n} \right) v \left(1 + \frac{1}{n} \right) = (1 + \rho) C \lambda,
\]

where \(C \) is the constant of inequality (1.2).
Let \(f \) be the function defined by
\[
 f = \frac{1}{C} \Psi_1 \left(\frac{\epsilon(\inf_{(x,y)} g)}{v + 1/n} \right) \frac{v + 1/n}{\epsilon(\inf_{(x,y)} g)} \chi_{(s(y),h(x))}.
\]

If \(z \in (x, y) \) we have, by (3.1),
\[
 Tf(z) = g(z) \int_{s(z)} f \geq g(z) \int_{s(y)} f = g(z) \int_{s(y)} \frac{\epsilon(\inf_{(x,y)} g)}{v + 1/n} \cdot \frac{v + 1/n}{\epsilon(\inf_{(x,y)} g)}
\]
\[
 \geq \int_{s(y)} \frac{1}{C} \Psi_1 \left(\frac{\epsilon(\inf_{(x,y)} g)}{v + 1/n} \right) \frac{v + 1/n}{\epsilon} = (1 + \rho) \lambda > \lambda.
\]

We have seen that \((x, y) \subset \{ z \in (a, b) : Tf(z) > \lambda \} \).

Applying (i), the inequality \(\Phi_1(\Psi_1(t)/t) \leq \Psi_1(t) \) and (3.1), we obtain
\[
 \beta(\lambda, x, y) = (\Phi_1 \circ \Phi_2^{-1})(\Phi_2(\lambda) \int_{x}^{y} u) \leq (\Phi_1 \circ \Phi_2^{-1})(\Phi_2(\lambda) \int_{x}^{y} u)_{\{z \in (a, b) : Tf(z) > \lambda\}}
\]
\[
 \leq \int_{s(a)}^{h(b)} \Phi_1(Cf) v = \int_{s(y)}^{h(x)} \Phi_1 \left(\frac{\epsilon(\inf_{(x,y)} g)}{v + 1/n} \right) \frac{v + 1/n}{\epsilon(\inf_{(x,y)} g)}
\]
\[
 \leq \int_{s(y)}^{h(x)} \Psi_1 \left(\frac{\epsilon(\inf_{(x,y)} g)}{v + 1/n} \right) v \leq \int_{s(y)}^{h(x)} \Psi_1 \left(\frac{\epsilon(\inf_{(x,y)} g)}{v + 1/n} \right) \left(v + \frac{1}{n} \right)
\]
\[
 = (1 + \rho) C \lambda \epsilon. \quad (3.2)
\]

The fact that the function \(\Psi_1(t)/t \) increases, together with (3.1) and (3.2) give
\[
 \int_{s(y)}^{h(x)} \Psi_1 \left(\frac{\inf_{(x,y)} g}{(1 + \rho) C \lambda (v + 1/n)} \beta(\lambda, x, y) \right) \frac{v + 1/n}{\beta(\lambda, x, y)}
\]
\[
 = \int_{s(y)}^{h(x)} \Psi_1 \left(\frac{\inf_{(x,y)} g}{(1 + \rho) C \lambda (v + 1/n)} \beta(\lambda, x, y) \right) \left(v + 1/n \right) (1 + \rho) C \lambda \epsilon
\]
\[
 \leq \int_{s(y)}^{h(x)} \Psi_1 \left(\frac{\inf_{(x,y)} g}{v + 1/n} \epsilon \right) \frac{v + 1/n}{\epsilon(1 + \rho) C \lambda} = 1.
\]
Letting \(n \to \infty \) and then \(\rho \to 0 \), we obtain
\[
\frac{h(x)\Psi_{1}\left(\frac{\inf_{(x,y)} g}{C\lambda}\beta(\lambda,x,y)\right)}{\beta(\lambda,x,y)} \leq 1.
\]

(ii) \(\Rightarrow \) (i). If \(\{m^j_k\} \) is the sequence given by Lemma 1,
\[
u\left(\{x \in (a,b) \mid Tf(x) > \lambda\}\right) = \sum_{j,k} \nu\left(\{x \in (m^j_k,m^j_{k+1}) \mid Tf(x) > \lambda\}\right).
\]

For fixed \(k \) and \(j \) we have that if \(x \in (m^j_k,m^j_{k+1}) \), then
\[
Tf(x) = g(x) \int_{s(x)} \int_{s(x)} f + g(x) \int_{s(x)} f + g(x) \int_{s(m^j_{k+1})} f.
\]

By the subadditivity of \(\Phi_{1} \circ \Phi_{2}^{-1} \), it is clear that
\[
\Phi_{1} \circ \Phi_{2}^{-1}\left(\int_{\{x \in (m^j_k,m^j_{k+1}) \mid Tf(x) > \lambda\}} u\right)
\leq \Phi_{1} \circ \Phi_{2}^{-1}\left(\int_{\{x \in (m^j_k,m^j_{k+1}) \mid g(x) \int_{s(x)} f > \lambda/3\}} u\right)
+ \Phi_{1} \circ \Phi_{2}^{-1}\left(\int_{\{x \in (m^j_k,m^j_{k+1}) \mid g(x) \int_{s(m^j_{k+1})} f > \lambda/3\}} u\right)
+ \Phi_{1} \circ \Phi_{2}^{-1}\left(\int_{\{x \in (m^j_k,m^j_{k+1}) \mid g(x) \int_{h(m^j_k)} f > \lambda/3\}} u\right)
= (I) + (II) + (III).
\]

Let us estimate (III). Let \(\{x_n\} \) be the sequence defined as in the proof of Theorem 1. Let
\[
E_n = (x_{n+1}, x_n) \cap \left\{ x \in (m^j_k,m^j_{k+1}) \mid g(x) \int_{h(m^j_k)} f > \lambda/3 \right\}.
\]

If \(x \in E_n \), then
\[
\frac{\lambda}{3} < g(x) \int_{h(m^j_k)} f \leq g(x) \int_{h(m^j_k)} f + 4g(x) \int_{h(x_{n+1})} f.
\]
This implies

\[\lambda \leq 12 \left(\inf_{E_n} g \right) \int_{h(x_{n+2})} h(x_{n+1}) \]

Let \(\delta_n = \inf E_n \) and \(\gamma_n = \sup E_n \). Since \(g \) is monotone, we can ensure

\[\lambda \leq 12 \left(\inf_{(\delta_n, \gamma_n)} g \right) \int_{h(x_{n+2})} f. \]

Applying this property and Young’s inequality, we obtain

\[
2\beta(\lambda, \delta_n, \gamma_n) \leq \beta(\lambda, \delta_n, \gamma_n) \frac{24}{\lambda} \left(\inf_{(\delta_n, \gamma_n)} g \right) \int_{h(x_{n+2})} f
\]

\[
= \int_{h(x_{n+2})} 24Cf \frac{\beta(\lambda, \delta_n, \gamma_n) \inf_{(\delta_n, \gamma_n)} g}{C\lambda v} v.
\]

\[
\leq \int_{h(x_{n+2})} \Phi_1(24Cf) v + \int_{h(x_{n+2})} \Psi_1 \left(\frac{\beta(\lambda, \delta_n, \gamma_n) \inf_{(\delta_n, \gamma_n)} g}{C\lambda v} v \right).
\] (3.3)

Since \(s(\gamma_n) \leq s(m_k^{j+1}) \leq h(m_k^j) \), condition (ii) gives

\[
\int_{h(x_{n+2})} \Phi_1(24Cf) v + \int_{h(x_{n+2})} \Psi_1 \left(\frac{\beta(\lambda, \delta_n, \gamma_n) \inf_{(\delta_n, \gamma_n)} g}{C\lambda v} v \right)
\]

\[
\leq \beta(\lambda, \delta_n, \gamma_n).
\]

Taking away this inequality to (3.3), we obtain

\[
\left(\Phi_1 \circ \Phi_2^{-1} \right) \left(\Phi_2(\lambda) \int_{\delta_n} u \right) \leq \int_{h(x_{n+2})} \Phi_1(24Cf) v,
\]

which implies

\[
\left(\Phi_1 \circ \Phi_2^{-1} \right) \left(\frac{\gamma_n}{\delta_n} \int_{E_n} u \right) \leq \int_{h(x_{n+2})} \Phi_1(24Cf) v.
\]

Summing up in \(n \) and applying the subadditivity of \(\Phi_1 \circ \Phi_2^{-1} \), we get

\[(\text{III}) = \left(\Phi_1 \circ \Phi_2^{-1} \right) \left(\Phi_2(\lambda) \int_{\{ x \in (m_k^j, m_k^{j+1}): g(x) \}^{\int_{h(m_k^j)} f \geq \frac{1}{2}} u \right) \leq \int_{h(x_{n+2})} \Phi_1(24Cf) v. \]
In a similar way, we have

\[
(I) \leq \int_{s(m^j_{k+1})} \Phi_1(24Cf)v.
\]

In order to estimate (II), let

\[
E_{j,k} = \left\{ x \in (m^j_k, m^j_{k+1}) : g(x) \int_{s(m^j_k)}^h f > \frac{\lambda}{3} \right\}.
\]

Since \(g \) is monotone, the set \(E_{j,k} \) is an interval. Working as in the estimation of (III), we prove

\[
(II) = (\Phi_1 \circ \Phi_2^{-1}) \left(\Phi_2(\lambda) \int_{E_{j,k}} u \right) \leq \int_{s(m^j_{k+1})} \Phi_1(24Cf)v.
\]

From the estimations of (I)–(III), we deduce

\[
(\Phi_1 \circ \Phi_2^{-1}) \left(\Phi_2(\lambda) \int_{\{x \in (m^j_k, m^j_{k+1}) : Tf(x) > \lambda\}} u \right) \leq \int_{s(m^j_{k+1})} \Phi_1(24Cf)v.
\]

Summing up in \(k \) and \(j \) and taking into account the subadditivity of \(\Phi_1 \circ \Phi_2^{-1} \), we get

\[
(\Phi_1 \circ \Phi_2^{-1}) \left(\Phi_2(\lambda) \int_{\{x \in (a,b) : Tf(x) > \lambda\}} u \right) \leq \int_{s(a)} \Phi_1(24Cf)v.
\]

References